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ASTRONOMICAL INSTRUMENTS IN CLASSICAL SIDDHANTAS
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This paper is a comprehensive study of the development of astronomical
instruments during Classical Siddhanta period (c.5-12th Century AD). Sevcral
astronomical instruments were described in the chapter called Yantra adhyava and
some other sections of astronomical Siddhantas. From these sources, historical
development of several types of instruments, which were devised by Indian
astronomers, can be traced. And also the methods of astronomical observation using
instruments were explained by Bhaskra I, etc. These facts show the importance to
investigate the observational astronomy in India.

This paper consists of the following sections.

1. Introduction,

2. Primary Sources,

3. The Gnomon,

4. The Graduated Level Circle and Orthographic Projection,
5. The Staff,

6. The Circle instrument and its Variants,

7. The Celestial Globe and the Armillary Sphere,
8.  The Clepsydra and Water Instruments,

9. The Phalaka yantra,

10. Methods of Observation,

11.  Conclusion.

1. INTRODUCTION

In this parc., I propose to present a comprehensive description of the development
of astronomical instruments described in Classical Siddhantas. What I call “Classical
Siddhantas” are the astronomical Siddhantas (fundamental texts) from Aryabhata’s to
Bhaskara II's, i.e. those which were composed between the 5th century and the 12th
century AD. In my previous paper, "I described two earliest Indian astronomical
instruments, gnomon and clepsydra, used in Vedanga period. In Classical Siddhanta
period, several astronomical instruments were used besides the gnomon and clepsydra.

Prior to this Classical Siddhdnta period, Greek astrology and astronomy were
introduced into India. According to David Pingree, a Greek astrological text was
translated into prose Sanskrit by Yavanesvara in AD 149/150, and it was versified as
the Yavana-jataka® by Sphujidhvaja in AD 269/270. Only the last chapter (chap.79)
of the Yavana-jataka is devoted to mathematical astronomy, and the rest is devoted
to astrology. In the last chapter, astronomical theory of the Greeks (Yavanas) is
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explained, but the name of the sage Vasistha is also mentioned, and it seems that some
tradition of Indian old astronomy ascribed to Vasistha is also partly mentioned there.
Another Sanskrit work which suggests Greek influence in the field of mathematical
astronomy is the Panca siddhantika of Varahamihira (6th century AD). It is a compilation
based on five earlier astronomical works, viz. the Paitamaha-, Vasistha—, Paulifa—,
Romaka—, and Surya-siddhédnta. Among them, the Paitamaha-siddhanta is purely based
on Vedanga astronomy, and the Vasistha-siddhanta seems to be a mixture of Indian
traditional astronomy developed from Vedanga astronomy and newly introduced foreign
elements. The Paulisa-siddhanta uses the eccentric theory, which may have been
introduced from Greece, and also the longitudinal difference in time between “Yavana”
and Avanti(=Ujjain) is given as 7 1/3 nadis, which corresponds to 44°, as mentioned
in the Pafica-siddhantika (111.13). This “Yavana” must be Alexandria. The Romaka-
siddhanta also uses the eccentric theory, and also the Metonic cycle of intercalation
and the length of a tropical year which is the same as that of Hipparkhos. In the
Pafica-siddhantika (XV.23),“Romaka-visaya” (country of Romaka) is mentioned to be
the place 90° west of Lanka (the place on the equator whose longitude is the same
as Ujjain). “Romaka-visaya” must be connected with Roman Empire. The Surya-
siddhanta is the most developed Siddhanta among the five Siddhantas quoted in the
Parica-siddhantika, and the eccentric and epicyclic theory, characteristic theory of
Greek astronomy, is used there. The process of Greek influence of astronomy into
India has been discussed by several people, notably by David Pingree.¥ The extent of
Greek influence is, however, still controversial.

The possibility of astronomical observations in this period is also controversial.
Roger Billard® analyzed Sanskrit astronomical works by the methods of mathematical
statistics, particularly the method of least squares, and showed that these works are
based on actual astronomical observations in India. That the statistical methods of R.
Billard is mathematically sound was maintained by B.L. van der Waerden® and also
by Raymond Mercier.® David Pingree, however, attacked Billard’s conclusion, and
argued that astronomical observation had not been carried out in ancient India, and
that astronomical constants in Classical Siddhantas had been derived from Greek
sources.” The analysis of astronornical constants in Classical Siddhantas is beyond the
scope of the present paper, and I shall not go into detail of the controversy of Billard
and Pingee. However, I would like to point out one thing. One of the reasons why D.
Pingree does not believe in actual astronomical observation in ancient India is as
follows.

“...They (statistical figures in Billard’s book - quoter) show that
Aryabhata’s mean longitudes were most nearly correct at precisely
the time when the tropical and the Indian sidereal zodiacs coincided
— in the early 6th century A.D. He (Billard - quoter) would attribute
this circumstance to Aryabhata’s precise observations, even though
there was no tradition of observational astronomy in India prior to
Aryabhata; but Aryabhata could only observe true , not mean
longitudes. It is not an easy matter to deduce the mean longitudes
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from these true longitudes; and for /—\ryabhata, with his rather clumsy
and innacurate planetary models, it would have been impossible to
arrive at results as good as Billard shows his to be... ” (David Pingree)®

I do not think that this Pingre’s argument is justified. We shall see in the last
section of this paper that the methods to derive astronomical constants from actual
astronomical observations were explained by Bhaskara I in detail, and that the methods
are theoretically correct. There 1s no reason to think that some of these methods were
not known to earlier Indian astronomers. So, it will be necessary to investigate the
possibility of actual astronomical observations in ancient India more seriously.

There is one thing which we should keep in mind regarding this Classical Siddhanta
period. Whatever the extent of early Greek influence may be, the transmission was
limited for a short period (from ca. 2nd century AD to ca. 4th century AD), which
is prior to Classical Siddhanta period, and the Classical Siddhanta period itself was
rather free from foreign influence. Astronomy was developed in India in its own way
in this period, and established itself as an independent discipline.

Sanskrit texts on the theory of mathematical astronomy are classified into three
classes according to their epoch as follows.

(1) Siddhanta — (Its epoch is the beginning of the kalpa),
(2) Tantra — (Its epoch is the beginning of the kali-yuga) ), and
(3) Karana — (Its epoch is any convenient year selected by the author).

A maha-yuga is a period of 4320000 years. According to traditional theory, a
kalpa is 1000 maha-yugas, and a maha-yuga is divided into four period, viz. krta-yuga
(1728000 years), treta-yuga (1296000 years), dvapara-yuga (864000 years), and kali-
yuga (432000 years). (Aryabhata’s theory is different from the traditional theory, and
a kalpa is 1008 maha-yugas, and a maha-yuga is divided into four equal periods.) The
beginning of the current kali-yuga is Friday, February 18, 3102 BC of Julian calender.

The Siddhintas may be considered as the most fundamental texts of Hindu
astronomy. Usually, a Siddhanta consists of two parts, i.e. the Grahaganita-adhyaya
{Chapter on the calculation of the position of planets) and the Gola-adhyaya (Chapter
on spherics). The Graha-ganita-adhyaya further consists of several chapters, viz. the
Madhyama-adhyaya (Chapter on mean motion), the Spasta-adhyaya (Chapter on true
motion), the Tri-prasna-adhyayva (Chapter on three problems, i.e. direction, place, and
time.), and also chapter on lunar and solar eclipses, lunar phases, helical rising and
setting, conjunction of planets and stars, and planetary nodes etc. The Gola-adhyaya
also consists of several chapters on spherics.

Most of Sidhantas have a chapter on astronomical instruments. i.e. the Yantra-
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adhyaya as a part of the Gola-adhyaya. This is our chief source material. The word
“yantra” means instrument. Besides the Yantra-adhydya, a section on armillary spheres
(Gola-bandha) is included in the Gola-adhyaya. Besides, some informations of
astronomical instruments are found in the Tri-prasna-adhyaya etc.

For general information about astronomical instruments in this period, the works
of S.B. Dikshit,” S.R. Das,'® L.V. Gurjar,'” and R.N. Ray!» may be consulted.

As we shall see in the next section, many Siddhantas have been translated into
English. However, two very important Siddhantas, the Brahma-sphuta-siddhanta of
Brahmagupta and the Siddhanta-Sekhara of Sripati, have not been translated into
English. So, special attention will be paid to these two works, and all verses in the
Yantra-adhyaya of these two works will be discussed in this paper.

2. PRIMARY SOURCES
i) The Aryabhatiya

Aryabhata (born AD 476) wrote the Aryabhatiya (AD 499)," which is the earliest
Sanskrit work on astronomy whose author and date are definitely known. This is the
fundamental text of one of the schools of Hindu astronomy, the Arya-paksa. The
epoch of this work is the sunrise of the beginning of the current maha-yuga. This is
a special feature of this work. This work is well known by Aryabhata’s rotating earth
theory.

This work was translated into English by P.C. Sengupta (1927), W.E. Clark
(1930), and K.S. Shukla (1976).2

In our connection, the Aryabhatiya has a description of a rotating celestial globe
(IV.22). The gnomon is also mentioned in the section of mathematics (I11.14-16).

Among several commentaries on the Aryabhatiya, the following have been
published: the commentary of Bhaskra 1 (AD 629),» of Somesvara (AD 10-12th
century)?, of Siiryadeva Yajvan (b.AD 1191),9 of Parame$vara (AD 15 th century),®
and of Nilakantha Somayidjin (b. AD 1444).” Some of them give informations about
further detail of instruments, the method of observation etc.

ii) The Aryabhata-siddhanta
Aryabhata wrote another work, the Aryabhata-siddhanta, which is a text of another
school of Hindu astronomy, the Ardha-ratrika-paksa. This is a school of midnight

system, and one civil day begins at midnight.

Unfortunately this work has been lost, but its fragment on astronomical instruments
is found in Ramakrsna Aradhya’s commentary Subodhini (AD 1472)D on the Sirya-
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siddhanta. This fragment has been edited and translated into English by K.S. Shukla.?
The following astronomical instruments are described there.

(1) The chaya-yantra (shadow instrument),
(2) the dhanur-yantra (semi-circle instrument),
(3) the yasti-yantra (staff)

(4) the cakra-yantra (circle instrument),

* (5) the chatra-yantra (umbrella instrument),
(6) the toya-yantrani (water instruments),

(7) the ghatika-yantra (clepsydra),

(8) the kapala-yantra (clepsydra)’

(9) the Sanku-yantra (gnomon).

Similar instruments ascribed to Aryabhata have also been mentioned by Tamma
Yajvan (=Tammaya) in his commentary Kamadogdhri (AD 1599)* on the Sirva-
siddhanta. Some related informations can also be had from Mallikdrjuna Siri's
commentary (AD 1178)% on the Surya-siddhanta.

iii) The Pafca-siddhantika

The Paiica-siddhantika of Varahamihira is a compilation based on five earlier
works, viz. the Paitamaha-, Vasistha-, Romaka-, Paulisa-, and Surya-siddhanta.

This work was edited and translated by Thibaut and Dvivedin, and also by
Neugebauer and Pingree.V

The Paiica-siddhantika has an independent chapter on astronomical instruments,
i.e. the 14th chapter entitled Chedyaka-yantrani (graphic calculations and instruments).
The contents of this chapter are as follows.

(1) Calculations and observations on a graduated level circle (vv.1-11)
(2) the V-shaped staffs (vv.12-13),

(3) the locus of the gnomon shadow (vv.14-16),

(4) the definition of terms (vv.17-18),

(5) the kapala (hemispherical sundial) (vv.19-20),

(6) the cakra (circle instrument) (vv.21-22),

(7) the gola (celestial globe) (vv.23-25),

(8) explanation of avana (the sun’s northern and southern courses) (vv.26),
(9) water instruments (vv.27-28),

(10) calculation of the terrestrial longitudinal distance (vv.29-30),

(11) the clepsydra (vv.31-32),

(12) conjunction of the moon with stars (vv.33-38), and

(13) visibility of the star Agastya (Canopus) (vv.39-41).
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iv) The Maha-bhaskariya

Bhaskara I, a follower of Arya-paksa wrote a commentary (AD 629) on the
Aryabhativa of Aryabhata, the Maha-bhaskariya, and the Laghu-bhaskaritya.

The Maha-bhaskariya was edited and translated by K.S. Shukla.? It has a
description of a circular platform with graduated circumference in order to observe the
sun’s amplitude at the time of sunrise (II1.56-60(i)).

The commentaries on the Maha-bhaskariya, one by Govinda-svamin with a super-
commentary by Parame$vara® and the other by Parame$vara®, have been published.

The Laghu-bhaskariya was also edited and translated by K.S. Shukla.®
v) The Brahma-sphuta-siddhinta

Brahmagupta (born AD 598) wrote a Siddhanta work Brahma-sphuta-siddhanta
and a Karana work Khanda-khadyaka.

The Brahma-sphuta-siddhanta? (AD 628) is the fundamental text of one of the
schools of Hindu astronomy, Brahma-paksa. It has a chapter on astronomical instruments,
i.e. the Yanta-adhyaya (Chapter XXII).

Brahmagupta explained the purpose of the Yantra-adhyaya as follows (XXII.
1-4; I tentatively foilow the verse number in Sudhi@kara Dvivedin’s ed.)?.

TeITEiE Agw™ aq dooefie iy I
qEEERE MAfda wafy TR (|
rEriF g s fsTeTE: |

Ml T AR §Tell e g W | 2]

aforash Mes e TEald e
O uftrTieETEl S TR 9 B3

N IR®WE: $g JAGA T ST |
Tferd e g=eaTd ad ged (141 |

“As the mean motion etc., which has been explained here, is shown clearly as
if it is presented before the eyes by one who knows spherics, the title of acarya
(teacher) is endowed on him and none else.

Acaryas like Srisena, Aryabhata, Visnucandra etc. did not understand spherics.
So, the spherics as taught by Brahma is made clear (by me).
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One who knows mathematics knows spherics, and one who knows spherics

understands the motion of planets. If one is ignorant of mathematics and spherics, how
can he know the motion of planets?

As it is impossible to discuss spherics without instruments, I shall tell a short

chapter on instruments clearly.”’

ey
2)
3)
)
(5)
(6)
W)
(8)
9)

Brahmagupta listed the names of instruments as follows (XXIL.5 7).%

R HTATATGA T RIINcAd  =h |
afte: Te@dled Fudd HI GSH 115 ||

afed w1 Ssaore: PuixoTan foAeiE®misen: |
TAPTSRE U9 FAEEATIR 6 )

qiere |9 e YWY qaRdor eI |
fordapotard: &g "9 ugearfd 171

“There are seventeen instruments in order to determine time, namely:

the dhanus (semi-circle instrument),

the turya-golaka (quarant),

the cakra (circle instrument),

the yasti (staff),

the sanku (gnomon),

the ghatika (clepsydra),

the kapalaka (“bowl”, the hemispherical sundial),

the karrtar? (“scissors”, a kind of equatorial sundial), and
the pitha (“seat”, a horizontal circle with a vertical gnomon).

And also (10) water, (11) compasses (12) plumb line, (13) set square, (14)

shadow, (15) midday, (16) the sun, and (17) the latitude. Among them, these eight
instruments are accessories for the purpose of knowing time.

A level ground is obtained by means of water, a circle is obtained by a pair of

compasses, a vertical line is obtained by a plumb line, and an oblique line is obtained
by a set square and other instruments.

I shall explain the remaining nine instruments.”

Besides those nine instruments, Brahmagupta described water instruments and the

self rotating instrument also.

The last half verse of this chapter is as follows (XXXI1.57(ii).%
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e gIfde gRwriREasaner | (57 1

“This is the 22nd chapter. There are 53 verses in drya metre on instruments.”

It is quite strange that this verse is numbered 57 in Sudhakara Dvivedin’s edition,
because this verse itself says that there are 53 verses in this chapter. In Ram Swarup
Sharma’s edition of the text (with various readings),” the first three verses of the
Yantra-adhyaya in Dvivedin’s edition have been transferred into the previous chapter
(Gola-adhyaya), and the vs.33 in Dvivedin’s edition has been excluded. Thus the total
number of the verses has become 53 in R.S. Sharma’s edition. However, the previous
chapter Gola-adhyaya already has 70 verses (without the first 3 verses of the Yantra-
adhaya), and the 70th verse clearly states that there are 70 verses in the Gola-adhaya.
So, R.S. Sharma’s numbering is also questionable. In this paper, I tentatively follow
Dvivedin’s numbering, but it does not mean that Dvivedin’s numbering is doubtless.

The synopsis of the Yantra-adhyaya of the Brahma-sphuta-siddhanta is as follows.

(1) Introduction (vv.1-4),
(2) list of instruments (vv.5-7),
(3) the dhanus (vv.8-16),
(4) the turya golaka (vs.17),
(5) the cakra (vs.18),
(6) the yasti (vv.19-38),
(6-1) the staff in general (vv.19-23),
(6-2) the V-shaped staffs (vv.24-26),
(6-3) determination of directions by the staff (vs.27),
(6-4) spherics and the staff (vv.28-31),
(6-5) surveying by the staff (vv.32-38),
(7) the Sanku (vv.39-40),
(8) the ghatika (vs.41),
(9) the kapalaka (vs.42-43 (1)),
(10) the karttart (vv.43(ii)-44),
(11) the pitha (vs.45),
(12) water instruments (vv.46-52),
(13) the self rotating instrument (vv.53-57(i)), and
(14) conclusion (vs.57(ii)).

vi) the Khanda-khadyaka

The Khanda-khadyaka (AD 665) is a Karana work of Brahmagupta. Its first part
follows Ardha-ratrika-paksa, and the second part gives Brahmagupta’s own correction.
It was edited with Amardja’s commentary by Babua Misra (1925), and was edited with
Prthiidaka-svamin’s commentary and translated into English by P.C. Sengupta (1941
and 1934), but they do not give information about astronomical instruments. Full text
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was edited with Bhattotpala’s commentary (AD 969) and translated into English by
Bina Chatterje (1970)," and its second part contains a description of the Sanku and the
ghatika (Uttara. 111.2-3).

This description is actually the same as that of the Brahma-sphuta-siddhanta
(XXII. 39 and 41). Bhattotpala’s commentary is helpful to interpret the text.

vii) The Sisyadhi-vrddhida-tantra

Lalla (sometime between the 8th century and the early 11th century) wrote the
Sisyadhi-vrddhida-tantra.V Its commentaries written by Bhaskara 112 and Mallikarjuna
Suri® have been published.

The Si_yyadhi-vrddhida—tantra has a chapter on astronomical instruments, i.e. the
Yantra-adhaya (Chapter XXI). Unfortunately, neither of the two commentaries is
extended to the Gola-adhyaya which includes the Yantra-dhyaya. The Sisyadhi-vrdhida-
tantra has ben translated into English by Bina Chatterjee, but the Yantra-adhyaya was
left untranslated by her. So, the English translation of the Yantra-adhyaya was supplied
by K.S. Shukla in the published English translation.®

Lalla listed the names of instruments as follows (XXI.53).9

Ml Mg gJae] TSHABCHA: |
NGHATALAH §IRITANOT FE I 1153 | |

“(1) The gola (armillary sphere),

(2) the bhagana (a ring in the equatorial plane),

(3) the cakra (circle instrument),

(4) the dhanus(semi circle instrument),

(5) the ghati (clepsydra),

(6) the Sanku (gnomom),

(7) the fakata (“cart”, the V-shaped staffs),

(8) the kartari { “scissors”, an equatorial semi circle with a perpendicular gnomon),
(9) the pitha (“seat”, a horizontal circle with a vertical gnomon),

(10) the kapala (“bowl”, a horizontal semi circle with a vertical gnomon),
(11) the Salaka (“needle”, a variation of the staff), and

(12) the yasti (staff) are the twelve instruments.”’

Lalla also listed some accessories in the next verse. Besides the above twelve
instruments, Laila described the water instruments, the self rotating globe, and the
shadow instrument also.

And also, the Sisyadhi-vrddhida-tantra has the Gola-bandha-adhikdra (Chapter
on the construction of the armillary sphere) as an independent chapter (Chapter XV).
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viii) The Vate§vara-siddhanta

Vate§vara wrote the Vatesvara-siddhanta (AD 904). 1t consists of the Ganitadhyaya
and the Goladhyaya, but the Goladhyava is extant in fragments only. Unfortunately,
the Yantradhyaya has not been found in those fragments. This text was edited and
translated into English by K.S. Shukla.V

Its Triprasnadhyaya (Chapter III), one chapter in the Garnitadhyaya, mentions
some instruments, such as the gnomon, the staff, and the “triangle-instrument” (a
variation of the staff).

ix) The modern Surya-siddhanta

The modern Suarya-siddhanta is the fundamental text of one of the schools of
Hindu astronomy, Saura-paksa. This is one of the most popular Sanskrit astronomical
texts. This is called “modern” only for convenience’ sake in contrast with the Sirya-
siddhanta in the Paifica-siddhantika of Varahamihira. This text was translated into
English by Bapu Deva Sastri, and also by Ebenezer Burgess (and W.D. Whitney).V

The modern Surya-siddhanta has a chapter on astronomical instruments (Chapter
XIII) entitled Jyotisa-upanisad-adhyaya. In this chapter, the armillary sphere is explained
in detail, but the other instruments are only briefly mentioned. It only lists the names
of the sanku, yasti, dhanus, and cakra (XI11. 20). The kapalaka (clepsydra) is briefly
explained (XIIL. 23). The nara-yantra (“man instrument”), which is actually the same
as the Sanku (gnomon), is also mentioned (XII1.24). The self-rotating globe and the
water instruments are also mentioned, but the method of their construction is not
explained explicitly.

Among several commentaries on the Surya-siddhanta, those of Parames$vara (AD
1432)* and Rangandtha (AD 1603)” have been published. Kamalakara’s commentary
was also published recently (Varansai, 1991), but it does not contain the chapter of
astronomical instruments. There are several other commentaries which are still in the
form of manuscripts. Among them, those of Mallikarjuna Siiri (AD 1178),Y Ramakrsna
Aradhya (AD 1472), 5)and Tamma Yajvan (AD 1599)® give important informations
about the Aryabhata-siddhdanta of Aryabhata.

x) The Siddhanta-$ekhara

Sripati wrote the Sidhaanta-Sekhara® (the 11th century). It has a chapter on
astronomical instruments, i.e. the Yantradhyaya (Chapter XIX). Although the
commentary written by Makkibhatta (AD 1377) has ben published, this commentary
does not extend to the Yantradhydya, and a commentary written by Babuaji Miéra has
been supplied in the printed edition.”

The Yantradhyaya of the Siddhanta-sekhara begins as follows (XIX.1-2).%
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“As a man who knows it (astronomy) cannot establish the rule of division of time
without instruments, I shall tell the description of the instruments such as the self
rotating instruments etc.

A level ground is obtained with the help of water (ap), a circle is drawn by a pair
of compasses (bhrama), a triangle and quadrangular are drawn by a set square (karna),
a plumb line (lamba) is for settling a straight vertical line, and the seeds (bija) (i.e.
the essential requirements for water instruments) are oil (taila), water (ambu), mercury
(rasa), and string (sitra)’’.

At the end of the Yantradhvaya, Sripati listed the names of instruments as follows
(XIX.27).%

MA%TH HHE B T
HTAFE T FUTH
= g=vEE fReataantT ) 2711

“(1) The gola (armillary sphere),

(2)
©)]
C)

)
(6)
(D
(®)
€)

the cakra (circle instrument),

the karmuka (= dhanus or “bow”, semi-circle instrument),

the karttari (“scissors”, an equatorial semi-circle with a perpendicular
gnomon),

the kapala (“bowl”, a horizontal semi-circle with a vertical gnomon),

the pitha (“seat”, horizontal circle with a vertical gnomon),

the sanku (gnomon),

the ghati (clepsydra),

the yasti (staff), and

(10) the gantri (= §akata or “cart”, V shaped staffs).

These are the instruments to know time, and the instruments to know directions.’”
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Besides these ten instruments, Sripati describes the self-rotating globe, the water
instruments, and the shadow instrument also in the Yantradhyaya.

The synopsis of the Yantradhyaya of the Siddhanta-Sekhara is as follows.

(1) Introduction (vs.1),

(2) list of accessories (vs.2),

(3) the armillary sphere (vv.3-6),

(4) the self-rotating globe (vv.7-8),

(5) water instruments (vv.9-11),

(6) the cakra (vv.12-13 (i)).

(7) the capa (= dhanus, semi circle) (vs. 13 (i1)),
(8) the kartrari (vs.14),

(9) the kapala (vs. 15 (i),

(10) the pitha (vv.15 (ii)-17),

(11) the Sanku (vs. 18),

(12) the ghatt (vv. 19-20),

(13) the yasti (vv.21-23 (i),

(14) the shadow instrument (vv.23 (i1)-25),
(15) the Sakata (vs.26), and

(16) list of instruments.

Besides the Yantradhyaya, gripati described the armillary sphere in the section
of the Gola-bandha (XVI. 29-39) in chapter 16 (Gola-varnana-adhyaya).

xi) The Siddhanta-§iromam

Bhaskra 1I (born AD 1114) wrote the Siddhanta-Siromani {AD 1150). It consists
of two parts, viz. the graha-ganita-adhyaya and the Gola-adhyaya. The Graha-ganita-
adhyaya was translated into English by D Arkasomayaji, and the Gola adhyaya was
transiated into English by Bapu Deva Sastri and Lancelot Wilkinson.? It has Bhaskara
II's own commentary Vasana-bhasya. The commentary Siromani-prakasa of Ganesa
(on the Graha-ganita),” the commentary Varttika (AA 1621) of Nrsirmha (on the both
of Graha-ganita and Gola),” and the commentary Marici of Muni§vara (on the both)?
have been published.

The Goladhyaya of the Siddhanta-Siromani includes a chapter on instruments,
i.e.. the Yantradhyaya (Chapter XI). At the beginning of this chapter, Bhaskara II lists
the names of instruments as follows (X1.2).%

M MEaad afte: wgue) %Y |

T 4 Hoe 4REG URARIE T=H |21
“(1) The gola (armillary sphere),
(2) the nadi-valaya (a ring in the equatorial plane),
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(3) the yasti (staff),

(4) the Sanku (gnomon),

(5) the ghati (clepsydra),

(6) the cakra (circle instrument),

(7) the capa (semi circle instrument),

(8) the turya (quadrant),

(9) the phalaka (“board”, an instrument to calculate time graphically from the
sun’s altitude), and

(10) the dht (“intelligence”, a variation of the staff), which is the unique best
instrument”.

Besides the above listed instruments, Bhaskara II described the self rotating
instrument in the Yantradhyaya.

And also, the Goladyaya of the Siddhanta-Siromani has an independent chapter
on the armillary sphere, i.e. the Gola-bandha-adhikara (Chapter.VI).

xii) Minor anonymous Siddhantas

Four anonymous Siddhantas have been collected and published by V.P. Dvived:
under the title of Jyautisa-siddhanta-sangraha. The title of the Siddhantas are the
Soma-siddhanta, the Brahma-siddhanta, the Pitamaha-siddhanta, and the Vrddha-
vasistha-siddhanta.

There are also other anonymous siddhantas, such as the Vasistha-siddhanta® and
the Romaka siddhanta.”

The Soma-siddhanta mentions the armillary sphere. The Brahma-siddhanta mentions
the water instruments etc. The Vrddha-vasistha-siddhanta mentions some interesting
instruments, such as the semi-circle instrument, the quadrant on which graphical
calculation is done, the horizontal (not vertical) gnomon, the clepsydra, and water
instruments.

xiii) Additional remarks.

Besides the above mentioned works, the Mahd-siddhanta of Aryabhata II ¥ is also
considered to be a classical Siddhanta. (Its date is controversial.) It does not have
chapter on instruments.

The tradition of Classical Siddhanta astronomy was well preserved in South India
in later period also, and several interesting works were composed there.”> Among
them, the Gola-dipika I (AD 1443)% of Parame$vara contains a section on the armillary
sphere. According to K.V. Sarma,? there are some other Kerala works on practical
astronomy also.
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3. THE GNOMON
i) Introduction

The gnomon is an ancient device for determining the east west direction as well
for knowing time. Already in Vedanga period, the gnomon was used, and mentioned
in the Karyayana-$ulba-sitra, the Artha-Sastra etc.” It is usually a simple vertical
stick. However, the horizontal gnomon is mentioned in the Vrddha-vasistha-siddhanta.
The gnomon is usually called $arku, and sometimes called nara-yantra (man-instrument)
in Sanskrit.

ii) The shape and material of the $anku-yantra
a) The Aryabhata-siddhanta
The Aryabhata-siddhanta of Aryabhata, quoted by Ramakrsna Aradhya in his

commentary on the Surya-siddhanta, describes there types of the Sanku-yantra as
follows.!

Tol EUSTA AR GAGH! EIaeepy: |
ARSTEHY: USHGAal gIaenSe: | 13211

TRl ST GRAgRIATIA!: |
FfdaagRg TFegdl el A 113311

Wﬂﬂgﬂ’r S USH: WIg glRig el |

gl T ASRAT I G hd TauT | 1341 |

“(The first kind of gnomon is) two angulas in diameter at the bottom, uniformly
circular (i.e. cylindrical), twelve angulas in height, and made of strong timber.

The second kind of gnomon is twelve angulas (in height), pointed at the top, and
massive at the bottom (i.e. conical in shape). {Associated with it is )} another true
gnomon of the same height, mounted vertically on two horizontal nails fixed (to the
previous gnomon) at the top and bottom thereof.

Another (third) kind of gnomon (which is more handy) is that having equal circles
at the top and bottom (i.e. cylindrical) and of twelve angulas.

Whatever shadow of the gnomon is seen to be cast by this instrument is indeed
the projection of the (Sun’s) zenith distance (i.e. the R sine of the Sun’s zenith
distance).”” (Translated by K.S. Shukla.)?

In this text, three types of the gnomon have been described by Aryabhata.
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Ramakrsna Aradhya continues to explain astronomical instruments after the quotation
from the Aryabhata-siddhanta, but unfortunately the original manuscript from which
our Lucknow-manuscript was copied seems to have been very defective and broken
off at the middle of the description of the gnomon. Nevertheless, the following
passage may be quoted, because the second type of the gnomon is explained more
plainly.®

IR (fga?) TeEYe §ISAAN GRS aas

[gap] . TEmARads fsgd T afewgy
e THagd WU T . [gap].
fBogd @olq TSHwW™ ST | deodafmean

GEATATHIGIEIMNG AT TIeon Al g<i =

“Another third (second?) type of the gnomon is two angulas in diameter at the
bottom, and twelve angula in height,.... (gap)... After making two holes horizontally
at the base and top, two nails should be horizontally fixed to the previous two holes,
and shadow end (?)... (gap)..Two holes should be made. It is called the supporter of
the [true] gnomon. To the holes at the tip of the previous * .o nails, a smooth round
and fine twelve angula needle (i.e. the true gnomon) !snould be fixed] ...”

Tamma Yajvan also described three types of the gnomon, which had originally
been mentioned in the Aryabhata-siddhanta, in his commentary on the Surya-siddhanta
as follows.®

TEHRERY: | TH Jad (J0?) IRRgERTEIEEg

EOSTARRAR: | TR gaedyall  gIeene o=y
sremaRadaftua: giirgags: Tgiiraiads

AAFHEIGH: AP | T AIHIg I A
WRIEGE: | gl JeaqenauRie: sfoqdgresmsa:
ASTAATERATEG! SR AT ]

“The gnomon (§arku) is of three kinds.

One type is cylindrical in shape, twelve angulas in height, and two angulas in
diameter.

Another type of two angulas in diameter at the bottom, twelve angulas in height,
pointed at the top, and having two horizontal holes at the bottom and top with
horizontal needles fixed to the holes, should be got constructed like pillar (stambha).
A string (s@izra), which is suspended vertically between the two nails, is the [true]
gnomon (nara-Sanku).

The third type, which is fit for the use of all people, is cylindrical in shape with
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small diameter, and is twelve angulas in height’’.%

_From the above sources, we can summarize the shape and size of the three types
of Aryabhata’s gnomon as follows. (See Fig. 1.)

()
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Fig. 1. Aryabhata’s gnomon (reconstructed)

The 1st type : A cylinder made of timber, 2 angulas in diameter and 12 angulas in
height.

The 2nd type: A conical gnomon, which is 2 anigulas in diameter at the base and
12 angulas in height, and a needle attached there as the ‘true
gnomon”(for ascertaining verticality).

The 3rd type: A cylinder which is 12 angulas in height, and has small diameter.

b) Bhaskara I's commentary on the Aryabhatiya

_ Bhiaskara I described three types of the gnomon in his commentary on the
Aryabhariya (11.14) as follows.9

(1) The Ist type :

RIS HHAFIR  agsE), sty =iy,
SURBAM TR sy
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“Twelve-arigula gnomon whose one third at the bottom is of the shape of right
prism, one third in the middle is of the shape of a traingular prism, and one thrid at
the top is a spike”.

Bhaskara 1 criticized this Ist type that it is difficult to ascertain its verticality.

(2) The 2nd type :

LA R L e CR IR R B AU R
wmETRd e Rrugnfafghia

“A right prism [whose four sides are] directed towards the four directions. For
ascertaining the verticality, the shadow of two uprights are made coincided, and the
direction [of the sun] is ascertained to be in direction of this desired upright.”

Bhaskara [ criticized this 2nd type that it is difficult to make it, and that it should
be rotated at every moment because the sun in moving.

(3) The 3rd type (Aryabhata school’s gnomon) :

AYRASTERA WY afFufuaguafia yafaeg)

A ATHTRTAGEAgT] A  ATaTasd  FIRTT: |

“An excellent cylindrical gnomon, made by a rotating machine, made of excellent
timber, free from holes, streaks, knots and wounds, with large diameter and large
height.”

After instructing to ascertain the verticality of this gnomon, Bhaskara I added as
follows.

TEFHTAR B gl gHgen s
T @Rl & @ fhed

“At the top of the [supporting] gnomon, at its centre, another cylindrical needle
made of metal or timber, whose height is greater than the radius of the supporter, is
attached centrally”.

This is Aryabhata school’s gnomon according to Bhaskara I. This type of the
gnomon is different from any type of the gnomon described in the Aryabhata-siddhanta.
(See Fig.2)

As regards the height of the gnomon, Bhaskara I wrote that it could be of any
length with any number of divisions, although some people had said that it should be
12 angulas.
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Fig. 2. Aryabhata school’s gnomon according to Bhaskara I (reconstructed)

c) Brahmagupta’'s gnomon

Brahmagupta described a conical gnomon in his Brahma-sphuta-siddhanta (XXI1.
39 ) as follows,”

T EUSTANY: G EISenS g |
ASHAATT G SHITAGIART: 139 | |

“It is two angulas in diameter at the bottom, pointed at the top, twelve angulas
in height, and pierced at the base and top of the gnomon (sanku). By the plumb line
from the hole at the top, verticality should be ascertained”.

The same verse appears in Bhattotpala’s version of the Khandakhadyaka of
Brahmagupta (Uttara..III.2). The following is a quotation from Bhattotpala’s
commentary.®

Famfag | JaguR Pl R 9w 3| 9alads |
TIAUTEWE: | dal dgk] I TArdi mavgngla:
TABIATTAAA STTADEY JeITATHITUTIEY: AT
fRrdfreel | gy @t w3

“[The text reads :] ‘pierced at the base and top’. Above the base, at any distance,
a hole should be made, which is smooth and horizontal. Similarly, below the top,
[another] hole [should be made]. After inserting the tip of two needles [to the previous
holes], two plumb lines, which are of equal length, should be hung down from above
on both sides of the needle. This is for [ascertaining] the horizontality of the needle.
Thus correct verticality is kept.”
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According to this commentary, the conical gnomon is the main body of this
instrument, and the two needles are used only for ascertaining the verticality of the
conical gnomon. So, this is similar to the second type of Aryabhata’s gnomon. (see
Fig. 3)

T

Fig. 3. Brahmagupta's gnomon (reconstructed)

Brahmagupta wrote to determine time by the gnomon as follows (XXII1.40).”

B gl gfe () sREvHIaNS TSEHH |
IR TeHaa Ay wledie TgHH 1140 | |

“Considering the shadow (chaya) as the R. sine of the sun’s zenith distance (drg-
Jya), the hypotenuse of the shadow [and the gnomon] (chaya karna) as the Radius
(yasti), and the upright (avalambaka, i.e. the gnomon) as the R. sine of the sun’s
altitude (fanku), the ghatikas etc. should be obtained from the gnomon (§arku-yantra)
as was told in the section of the yasti”.

Here Brahmagupta refers to the verse (XXII.23) of the same work, where he
wrote to determine time from the R.sine of the sun’s altitude. (See the section of the
yasti below). The method of calculation is, however, not given there. The method of
calculation to determine time is a topic of the Tri-prasna-adhyaya rather than the
Yantra-adhyaya . (We shall discuss the method of calculation later.)

d) Lalla and Sripati

Lalla described the gnomon in his Sisyadhi-vrddhida-tantra (XX1. 31 33). The
description of its shape and material is as follows (XXI. 31 32).10

FARE: FAYATUURERIOR[HARETEHT: |
FORAVNIASOTEq 9 Foael: Tgdq: 3111



174 YUKIO OHASHI

T TSI BTG A fiRaer: |
W (RIT) GEH: WM e 9 gadad Had 321

“The gnomon, constructed with the help of the revolving machine, having equal
periphery at the top and bottom, made of very heavy and strong timber, perfectly
straight and free from scars, streaks and spots, uniformly circular, six aagulas in
circumference and twelve angulas in height, should be set up on a (horizontal) board,
(already) levelled by means of water, in vertical direction with the help of four
plumbs”. (Translated by K.S. Shukla)!¥

Sripati also described a similar gnomon in his Siddhanta-§ekhara (XIX. 18) as
follows.'®

fEeReTo IREwgH Al a1
TS FRITEIECH: TTHYTH:
IIA 38 TR TSGRBIE el W | 18] ]

“The approved gnomon (Sanku} is a cylinder made by a rotating machine, having
uniform measure at the bottom and top, made of tusk of an elephant or strong timber;
and it is heavy, made straight by a plumb line, free from scars, uniformly six angulas
in circumference, and twelve anigulas in height.”

If m is roughly considered to be three, the gnomon of Lalla and Sripati can be
said to be the same as the first type of the gnomon of the Aryabhata-siddhanta , whose
diameter is two angulas.

e) Bhaskara II’s gnomon

Bhaskara II described a cylindrical gnomon in his Siddhanta-§iromani
(Gola, X1.9) as follows.!»

BESEUESERNE L R FANCARCE G HIN ST
T Wik o e 119 1

“The gnomon has equal periphery at the bottom and top, is constructed by a
rotating machine, and is made of ivory.

From its shadow, the knowledge of the direction, the place (i.e. the latitude of
the observer), and the time is declared’’.

Bhaskara II did not mention the size of the gnomon.
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f) Conclusion
There were several variations of the gnomon in early age, but the cylindrical 12-

angula gnomon has become the standard gnomon. The variations of the gnomon
described by several authors in Classical Siddhanta period can be tabulated as below.

shape diameter height material
(angulas) (angulas)
Aryabhata’s
Ist type cylinder 2 12 timber
2nd type cone and 2 at the
a “true base 12 —_
gnomon”
3rd type cylinder small 12 -
Bhaskara I's
Ist type a combination of a right prism, a triangular

prims, and a spike

2nd type a right prism
cylinder
3rd type with a large large timber
needle
Brahmagupta  cone 2 12 —_—
Lalla cylinder 6/n 12 timber
Sripati cylinder 6/n 12 ivory or timber
Bhaskara 1I cylinder —_— —_ ivory

1ii) The theory of the gnomon

The use of the gnomon is explained in detail in the chapter on “three problems”
(direction, place, and time), i.e. the Tri-prasna-adhyaya of the Siddhantas. Since it is
beyond the scope of the present paper to discuss about the Triprasnadhyaya extensively,
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I would like to confine myself to the discussion of two practical topics, i.e. the
determination of directions, and the determination of time. The determination of
directions is explained in architectural literature also, and we shall briefly discuss this
topic also.

a) The determination of directions

The method of determination of east west direction by using the gnomon is
already mentioned in the Katyayana-Sulba-sutra (1.2), which is one of the Vedanga
literature. In Classical Siddhanta period, some astronomers further devised the correction
due to the change of the sun’s declination within a day.

(1) Indian circle method

Let us first see the method of the determination of directions without the correction
due to the change of the sun’s declination. The following method is based on the
description in the Sarva-siddhanta(1ll. 1-4)Y (See Fig. 4)

3

Fig. 4. Indian circle method

Firstly, one should draw a ground level circle (ENWS in the figure), whose radius
is equal to the height of the gnomon (i.e. 12 angulas), on a horizontal stony surface
or hard plaster. Then, a 12-angula gnomon (GO) should be erected vertically at its
centre. Then one should mark two points (P and P!) on the circle, where the tip of
the shadow touches in the forenoon and afternoon respectively. Their perpendicular
bisector (NS) is the north-south line. The perpendicular bisector of this north-south
line is the east-west line (EW).

This method is the same as that of the Katyayana-$ulba-sutra, and well known
as Indian circle method.
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(2) Corrected Indian Circle method.

Before discussing the correction due to the change of the sun’s declination, we
should see the relationship between the gnomon-shadow, the sun’s amplitude, the
sun’s declination, and the observer’s latitude.? (See Fig.5, where Fig.5(a) is a diagram
of the ground level circle, and Fig.5(b) is an orthographic projection of the celestial
sphere onto the plane of the meridian.)

{
l:'\v:clt Z
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horizon
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E/E/ cyvcle
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Fig. S. (a) Diagram on the level circle (b) Orthographic projection of the clectial sphere onto the plane of
the meridian

Firstly, let us see the relationship between the shadow and the sun’s amplitude
(angular distance between the east cardinal point and the sun’s rising point). The
R.sine of the sun’s amplitude (OF in Fig. 5 (b) is called agra. Let OM (in Fig.5 (a))
be the equinoctial midday shadow, when the gnomon is erected vertically at the point
O. Then the line E’ ‘MW’ is the locus of the tip of the equinoctial shadow which is
a straight line, if the change of the sun’s declination is neglected. Let X (in Fig. 5 (b))
be the position of the sun at arbitrary time of arbitrary day, X’ the point on the equator
whose altitude is the same as X, the point A (in/Fig. 5 (a)) the tip of the shadow when
the sun is at X, and A’ the tip of the shadow when the sun is at X. Here, OA = OA’,
because the altitude of X and X' is the same. Now, the orthographic projection of XX’
on the plane of the meridian is equal to the agra (OF), as is evident from Fig. 5(b),
and the orthographic projection of AA’ on the plane of meridian is equal to AB, as
is evident from Fig. 5 (a). Two triangles OXX’, where O is the centre of the celestial
sphere and X and X’ are the points on the celestial sphere, and GAA’, where G is the
top pf the gnomon, are similar. Considering these facts, we have the following
proportion:
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agra : AB = XX’ : AA’ =R : h,

where R is the Radius of the celestial sphere, and h is the hypotenuse of the shadow,
that is :

h = V g2+0A?,
where g is the height of the gnomon. Accordingly,

h
AB = - X agra. 1)
R <98 (

Sometimes, this amount AB is also called agra (for the circle whose radius is equal
to the hypotenuse of the shadow). (See Surya-siddhanta, 111.7.)

Now let us see the relationship between the agra, the sun’s declination, and the
observer’s latitude. In Fig. 5 (b), two triangles OJK and FOG are similar. Since the
angle ZQOJ is equal to the observer’s latitude, the segment JK is equal to the R.cosine
of the observer’s latitude. It is clear from the figure that the segment OG is equal to
the R. sine of the sun’s declination. Therefore,

JK : O] = OG : OF,
or
R.cos ¢ : R = Rusin 8 : agra,

where ¢ is the observer’s latitude, and & is the sun’s declination.
Accordingly,

. RxRsind
agra = ———— 2)
R cos ¢

Now let us discuss the method of the correction applied to Indian circle method
due to the change of the sun’s declination.

As far as we can judge from extant sources, the earliest Indian astronomer who
explicitly mentioned the correction due to the change of the sun’s declination is
Caturvedacarya Prthiidakasvamin (fl. AD 864). He rightly pointed out in his commentary
on the Brahma-sphuta-siddhanta (II1.1)» of Brahmagupta that the east-west line
determined by the usual method should be corrected according to the difference of the
agra at the time of the shadow’s entry into and exit from the circle.

Sripati also explained the method of the correction. He wrote the process of the
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calculation in his Siddhanta-Sekhara as follows (IV.2-3).%

I ATRIAvSAGITE Qo R AR g |
a9 1 oy, wfonfy wrg yERumEEE (2

BRI IR TG HIfaoieaT=R

govi WHIVA ARdEd WIaS AR Bad |
RECHECR R IR G U C R HI C S D DG

W] YrAR] SUaAl STAIE  WREgHIRAd |13 11

“The sun moves towards south or north along the ecliptic every moment. Therefore,
the direction [determined by Indian circle method] appears to be incorrect. The corrected
direction will be [obtained by applying a correction] further by [using] the R. sine of
the declination.

The difference of the R.sine of the sun’s declination at the time of the shadow’s
entry and exit [to and from the level circle] is muitiplied by the hypotenuse [of the
shadow] and divided by the R. cosine of the terrestrial latitude. The result is [the
correction in terms of] angulas etc. One should shift the western mark to the opposite
direction to the sun’s course (ayana). Otherwise, one should shift the eastern mark to
the same direction of the sun’s course. [Thus] the correct east west line {is obtained].”’®

This rule can be expressed as follows:

h (R.sin 3, ~ Rusin d,)
- R.cos &

3)

X

where 6, and &, are the declination of the sun at the time of the shadow’s entry into
and exit from the circle respectively, and x is the amount of the correction. (See Fig.
6.) In the figure, the line PP’ is the east west direction obtained by the usual method,
the segment PQ the amount of the correction, and the line QP’ the corrected east-west
direction., The amount of the correction x is equal to the difference of the north-south
component of the shadow at the two moments, as is evident from the figure. From the
equations (1) and (2), we can prove the formula (3) as follows. Let A and A’ be the
amount of the agra at the two moments. Then we can express the amount x as follows.
From the equation (1),

h h
X==-XA~=-XA".
R R

Then from the equation (2),
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S

Fig. 6. Fixation of East-West Line

h x R x Rsin §, h x R x Rusin 3,

R x R.cos ¢ R x R.cos ¢

Therefore,

h (R.sin 8, ~ R.sin 8,)
- R cos @

X

Hence proved.

After Sripati, Bhiskara II9 etc. also explained the method of the correction due
to the change of the sun’s declination.

(3) Three-shadow method
There is another method of determination of directions which can be called three-

shadow method. Varahamihira wrote in his Pafica-siddhantika (XIV.14-16) as follows.”
(See Fig.7.)

TRTESETHEEd  Braa) foae) |
THRIGHA YA GATaG R | 11411

P RegaTaeE qved A @ |
A7 ®eEM W TsereggaR | 11511
USRS g Ha g SRR 9afd |

TWEHANRIITRYT T AegfeA BT 11611
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N\ fis\w-‘ﬂaurc

Fig. 7. Three-shadow method

“One should thrice mark the tip of the shadow near the centre (i.e. near the tip
of the midday shadow), and then draw two fish figures (in order to draw the
perpendicular bisectors of the marks). [Draw] a circle with a string with the centre
which is the intersection of the two lines produced from the mouths of these fish
figures, in such a way that the circle touches the three marks. On that day, the shadow
of the gnomon moves on that [circle] without leaving it.

The line joining the centre and [the base of] the gnomon is the north south line.
Its (the circle’s) distance from the gnomon in the north direction is the midday
shadow.”’®

This method is evidently inexact, because the locus of the tip of the shadow is
hyperbola and not circle, but this approximation can be used without much error near
the midday shadow. Bhiaskara 11, in his Siddhanta-§iromani (Gola,X1.38(ii)),” rightly
criticized the theory that regards the locus of the shadow as a circle.

b) The determination of directions in architecture

The Indian circle method was also used in Silpa-Sastra (architecture) for the
determination of directions. P.K. Acharya’” made well-known the method written in
Chapter IV of the Manasara (ca. 500-700 AD?). According to the Manasara, the
gnomon is made of wood, and its length may be 24, 18, or 12 angulas, and its width
at the base should be 6, 5, and 4 angulas respectively. It tapers from the bottom
towards the top, and its width at the top is 2, 1, and 1/3 angula respectively.
Alernatively, 9-angula gnomon could be used. As regards the method of the observation,
the Manasara (V1.11(d)-15) reads as follows.!D
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BRI {1111

T ol oeguHedT 9|
YHATHUSH HARTAE ASHAA 1112 ||

qaigy TeHAB UREH AvSATHA |
g fgaaa g fifw (@) R s
[#1] Wiy Tegdwal yEiReHrearTs |
qafeEy (g) WY UsErReEd ogoiad: |14 |
N AMYSIeRTdT? TR |
TEYE SISl OFdl Yl T | 115 ]
“In the centre of the selected site the expert geometrician should describe a circle

by moving around (a cord of) twice the length of the gnomon (as the radius); and on
the centre (of the circle) a gnomon should be fixed.

In the forenoon (at certain time) the chief architect should mark a point (where)
the shadow from the gnomon (meets) the circumference in the west. In the afternoon
(also) a point should be marked as before (i.e. as in the morning) where the shadow
from the gnomon (meets) the circumference in the east. Thereafter the gnomon should
be left (to remain) therein.

The length of the gnomon being divided into ninety six parts, (and) the apacchaya
being left out of these parts, the (due) east should then be determined.’”” (Translated
by P.K. Acharya)'?

After this, the Manasara (V1.16-18(1), and 25(ii)-38) gives the amount of the
apacchaya, which can be tabulated as follows.

Months First 10 Middle 10 Last 10
days days days

Mesa 2 1 0 (angulas)
Vrsa 0 1 2
Mithuna 2 3 4
Kulira 4 3 2
Simha 2 1 0
Yuvati 0 1 2

Tula 2 3 4
Vricika 4 5 6
Dhanus 6 7 8
Makara 8 7 6
Kumbha 6 5 4

Mina 4 3 2
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Here, the name of months is given according to the zodiacal sign where the sun
stays beginning with Mesa (Aries)

The method to use this apacchaya is explained in the Manasara (V1.18 (ii)-21).
P.K. Acharya translated this passage as follows.

“The aforesaid angulas should be marked in the shadow to the left and right of
the centre; (with) that is left after the deduction of these angulas the due east line
should be drawn.

During the six months (i.e. the northern solstice) beginning with Makara (December
21-22) the shadow declines towards the south and during the six months (i.e. southern
solstice) beginning with Kulira (June 21-22) the shadow declines towards the north.

In the shadow facing the east-left the left (point) should be marked; thereafter
moving towards the east and right the west-left points should be marked. The architect
should leave out the apacchaya and draw the east west line.”” (Translated by P.K.
Acharya)!®

We shall re-examine this text later with the quotation of the original text.

The same table of the apacchaya is also found in another architectural work
Mayamata'® and also in an encyclopedic manual /$ana-§iva-gurudevapaddhati (the
late 11th or early 12th century)’® of Gurudeva.

The meaning of the apacchaya is controversial. P.K. Acharya thought that the
term apacchaya means ‘“the shadow which is displaced or wrongly placed”, and
supposed that it is for the correction applied to the shadow. He suggested the possibility
that it is for the correction due to the change of the sun’s declination, but simultaneously
pointed out that the values in the given apacchaya-table do not fit for this correction,
and he had to conclude that it is difficult to find the correct solution. He pointed out,
for example, that the correction should be zero at the solstices if the correction is due
to the change of the sun’s declination, but the apacchaya-table is not so0.'®

I Filliozat thought that the apacchaya means “ombre réduite” (i.e. reduced shadow),
that is the midday shadow which has most deduced length. Accordingly, he calculated
the latitude of the observer from the length of the apacchaya as the midday shadow
of 12-arigula gnomon, and concluded that the latitude would be 10°, 9° and 5° by the
data at the winter solstice, equinox, and summer solstice respectively.'”

Bruno Dagens first interpreted in his French translation of the Mayamata that the
values of the apacchaya are the distance from the tip of the shadow to the east west
line.!® (What is meant by him is the segment PQ and P’Q’ in Fig.8.) However,
following J.Fillozat’s suggestion, Dagens later abandoned this interpretation.'?
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Locus of the 'hP
of the shadow

Fig. 8. Apacchava (Distance from the tip of the shadow to the East-West Line)

Michio Yano interpreted that the apacchdya table represents the “variation of the
length of the noon-shadows expressed in a modified linear zig-zag function”.?® This
interpretation is practically the same as the interpretation of Filliozat. After pointing
out that this linear zigzag function is similar to that of the shadow table in the Artha-
Sastra (11.20. 39-42), Michio Yano commented as follows.

“It is highly probable that a set of the Babylonian shadow tables was transmitted
tu India and thereafter handed down to the south undergoing the simple modification
(parallel displacement, to use mathematical terms) in order to accommodate itself to
the south Indian latitude without changing the fundamental scheme of the linear
zigzag function.” (Michio Yano)?V

Bruno Dagens accepted M. Yano’s interpretation in his English translation of the
Mayamata, and commented in its Introduction as follows.

“The orientation of the site is made according to the classic method with a
gnomon (§anku, 6.1-11). On this point the text presents the apcchyaya (6.11b-13 and
27-28) which is said to be a factor that allows for the rectification of the rough
indication furnished by the gnomon; in reality, as Michio Yano recently proved, this
development on apacchaya, which is found in the same context in several texts, has
nothing to do with the orientation but simply gives a method of expressing the
vanation of the length of the noon shadows in a modified linear function, which
method would seem to have its far off origin in Babylonia. The unresolved question
remains as to how and why this development has been systematically introduced in
the orientation rules.” (Bruno Dagens)?®

As B. Dagens himself is aware, the variation of the midday shadow has nothing
to do with the orientation method, and it is quite strange to suppose that it was
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recorded in the section of the orientating method. Moreover, this interpretation includes
too south latitude (10°N or so) of the observation, although it is difficult to suppose
that all of these architectural works were used in extreme south only. As regards the
hypothesis that the linear zigzag function of the shadow length in the Artha-$astra etc.
were transmitted from Babylonia, I have shown in my previous paper that it is
groundless.?¥

I think that B. Dagens’s first interpretation in his French translation of the
Mayamaya was basically correct, and the apacchaya-table was meant to obtain the
east-west line which passes through the central gnomon. Practically, the correction
must have been considered as PW and P’E in Fig. 8, rather than PQ and P’Q’, because
the correction of PQ and P’Q’ presupposes the knowledge of the line EW which is
to be known after the correction.

Let us again read the Manasara (V1.18(ii)-21) carefully. The original text is as
follows.?®
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I already have quoted P.K. Acharya’s translation of the above text, but this text
may rather be translated as follows.

“The aforesaid angulas should be shifted leftward or rightward from the mark of
the shadow [on the circle].

At the end of the [correctional] angulas, the correct east [-west] line should be
drawn.

During the six months beginning with Makara (Capricorn) (i.e. from the winter
solstice) the shadow declines towards the south, and during the six months beginning
with Kulira (Cancer) (i.e. from the summer solstice) the shadow declines towards the
north.

Facing the shadow, [if] the [western] mark should be shifted leftward from the
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western [mark], the eastern [mark} should be shifted rightward taking the angulas with
which the western [mark was shifted] leftward.

The architect should deduct the apacchaya and draw the east west line.”

It appears from this text that the two marks (P and P’ in Fig. 8) are shifted
towards the same direction (PW and P’E in the figure), and the “correct east-west
line” means the east-west line passing though the central gnomon (the line WE in the
figure). We can suppose that the seasonal parallel shift of the east-west line from the
central gnomon was inconvenient for architects, and this correction was necessary.

Let us estimate the observer’s latitude by this interpretation. Firstly, it is necessary
to know the radius of the level circle. We have already seen that it is a double of the
length of the gnomon in the Manasara (VI.12). On the contrary, Bruno Dagens
thought that the radius of the level circle is the same as the length of the gnomon in
the Mayamata (VL7 (ii)-8(1)). The Mayamata (V1. 7(ii)-8(1)) reads as follows.?®

g Godl R  nuderEd 17 1]
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Bruno Dagens translated this text as follows.

“When the gnomon has been made it is set up in the chosen place at sunrise, then
a circle is drawn of which the gnomon is the centre and of which the diameter is
double the length of the gnomon.” (Translated by Bruno Dagens)®

Here, it is seen that the phrase “Sanku-dviguna-manena” has been translated as
“of which the diameter is double the length of the gnomon”. This translation is quite
strange, because it is natural to think that the phrase “Sanku-dviguna-manena” refers
to the length of the string by which the circle is drawn, that is the radius of the circle
and not diameter. Bruno Dagens explains the reason of this strange interpretation in
a footnote of his French translation, which can be rendered into English as follows.

“Sankudvigunamanena: It cannot be related with the radius; because the latter
then being two cubits (aratni), the circle would tangent at the borders of the levelled
square, and there would not remain the space for drawing complementary circles
which enable to fix the north south line and the intermediate directions.”?”

Here, Bruno Dagens refers to the largest type of the gnomon, which is indeed one
aratni (= 24 angulas) long (Mayamata, V1.4a). The length of a side of the levelled
square is indeed one danda (= 4 aratnis = 96 angulas) (Mayamata, V1. 3a). So, B.
Dagens is right is saying that the circle of two-aratni radius tangents the levelled
square. However, this fact does not imply that B. Dagens’s interpretation is right.
After the east west line is drawn, fish-figures for obtaining the north-south line etc.
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can be drawn without much space outside the circle, because there is enough space
for the constructions inside the circle. It is rather likely that the dimension of the
levelled square was chosen only to contain the circle for the largest gnomon. So, there
is no reason to doubt that the phrase “Sanku-dviguna-manena” means “by the radius
of the double of length of the gnomon”, which is the most natural interpretation of
Sanskrit.

Now we shall proceed to estimate the observer’s latitude. According to apacchaya-
table, the apacchaya is zero during the last 10 days of the month M=sa (Aries) and
the first 10 days of the month Vrsa (Taurus). It means that the correction is zero when
the sun’s tropical longitude is 20°-30° and 30°-40°. As the radius ot the level circle
is a double-length of the gnomon, the sun’s altitude is arctan (1/2) when the tip of the
shadow touches the circle. From these facts, we can calculate as follows.?® If the sun’s
direction is exactly the east or west at the time when its altitude is arctan (1/2) during
the days when the sun’s longitude is 20°-30°, the most suitable latitude is about
18°-26°. During the days when the sun's longitude is 30°-40°, the most suitable
latitude 1s about 26°-35°.

Now we shall calculate the actual amount of the cor~_.iion (the chord of PW or
P’E in Fig. 8). In order to calculate this amount, we snould know the amount of the
radius of the level circle, but it is not specified in the text. Since the length of the
gnomon may be 24, 18, 12 or even 9 angulas, the radius of the circle can be 48, 36,
24 or 18 angulas.

Let us see the actual amount of the correction at the winter solstice at the latitude
of 18°, 26°, and 35° for various radii.?®

latitude r =48 r =36 r=24 r=18 r=12
18° 322 241 16.1 12.1 8.0
26° 389 29.2 19.4 14.6 9.7
350 50.5 37.9 253 18.9 12.6

According to this table, only the radius of 12 aagulas seems to fit the apacchaya,
although this radius cannot be derived from the length of the gnomon mentioned in
the text. I tentatively assumed that the radius of the level circle is 12 angulas, and
drew a graph (Fig. 9) of the apacchyaya and the actual amount of the correction at
the latitude of 18° and 26°. From this graph, it appears that the apacchaya is very
close to the actual correction according to our interpretation, especially at the latitude
of 18° or so. It may be that the radius of the circle was regarded to be 12 angulas
for the calculation of the apacchaya regardless the actual radius of the circle which
varies according to the length of the gnomon.
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Fig. 9. Amount of the correction (angulas) for 12 afgula radius circle

As far as we interpret that the apacchaya is for the correction when the radius
of the level circle is a double the length of the gnomon, the observer’s latitude cannot
be so much south as was suggested by J. Filliozat etc., because our estimation of the
observer’s latitude holds whatever the actual amount of angulas of the gnomon and
circle may be. The fact itself that the radius of the level circle is the double the length
of the gnomon also suggests that the latitude of the observer was not so much south.
If the radius of the level circle is the same as the length of the gnomon, the tip of
the shadow will not cross the circle in winter at higher latitude than 21.5°. Even at
slightly lower latitude, the observation will be quite inconvenient in winter, because
the tip of the shadow will almost tangent the circle. Thus, larger level circle is more
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suitable for higher latitude, and the observer at higher latitude will naturally use larger
level circle.

¢) The determination of time
(1) Rough methods

The theory of the gnomon is explained in the section of mathematics of some
Siddhantas also. The Ganita-adhyaya (chapter on mathematics) of the Brahma-sphuta-
siddhanta of Brahmagupta gives a rough method to obtain time as follows (XII.52
@

BRFRAGET Tad AR TR |

*“The half day being divided by the shadow (measured in lengths of the gnomon)

added to one, the quotient is the elapsed or the remaining portion of day, morning or

evening.” (Translated by H.T. Colebrooke)*V

This rule can be expressed as follows.

SR =%

time = , —A(D

S
1+ -
g

where d is the day-length, s the shadow length, and g the gnomon length. This rule
is based on an old theory of Vedanga period mentioned in the Artha-$astra (11.20.39-
40) etc., which was originally meant for the summer solstitial day.’?

The incorrectness of Brahmagupta’s methods was criticized by the commentator
Caturvedacarya Prthiidakasvamin (fl. AD 864) that it is incorrect even on the equator.®®

Similar rule was also given in the Ganita-sara-sangraha (IX.8(i1)-9(1))** of
Mahavira (9th century AD) and also the TriSatika (65)*” and the Ganita-paficavimst
(30)*® of Sridhara.

Somewhat better rule is found in the Yavana-jataka (79.32)*" of Sphujidhvaja,
which can be expressed as follows.

. g xdn2
time = ———— , ——{(2)
g+s+s

where s’ is the midday-shadow. The Yavana-jataka is based on the doctrine of the
Greeks (Yavanas) as its title suggests, but it should be noted that the name of Sage
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Vasistha is also mentioned there (97.3), and this fact suggests that some Indian old
astronomy may also be recorded there. If we put s° = 0 in the formula (2), it gives
the formula (1), and the formula (2} is considered to be the generalized formula for
the whole year developed from the formula (1) which is a special formula for the
summer solstitial day.’®

The Parica-sidhantika (IV. 48) of Varahamihira gives the following method which
is the same as the formula (2) when the gnomon lenght is 12 angulas.?”

6xd '
nadikas = ———— -~—(3)
12 +s -5

It is interesting that the Pafica-siddhantika (11.11) gives the method to obtain
lagna (rising point of the ecliptic) as follows.“®

36
laghna = ——— + L, --—(4)
12 +s5 - &'

where L is the longitude of the sun. As lagna minus | roughly corresponds to the time
elapsed, and 6 signs to the day-length, this formula is considered to be the same as
the formula (3). The formula (4) is attributed to the Vasistha-samasa-siddhanta, and
this Siddhdnta seems to be based on Indian old theory developed from the Vedanga
astronomy, although new foreign elements like lagna and zodiacal signs are mixed
there. In this connection, we can also note that the annual variation of the day-length
and the annual variation of the length of gnomon-shadow, both of which are similar
to those of Vedanga astronomy, are also connected with the Vésistha-samasa-siddhanta
in the Pafica-siddhantika (chap. II).

The Ganita-sara-sangraha (IX.15(ii)-16(i)) of Mahavira*’ gives the following
method to obtain time expressed as portion of a day, which is the same as formulae
(2) and (3) in principle.

6
time = (5)
2x(g+s—3s)

The above methods are only rough methods, and Varahamihira and Brahmagupta
of course knew the exact method to obtain time as we shall see below.

(2) Exact methods

The exact time can be calculated from the sun’s altitude. The principle of the
calculation has been explained in the Triprasnadhyaya of Siddhantas. This calculation
can be explained as an application of the orthographic projection of the celestial
sphere onto the plane of the meridian and onto the plane of the equator. (See Fig. 10
(a and b)). The process of the calculation is as follows.
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Fig. 10. (a) Orthographic projection onto the plane of the meridian; O: Projection of the sun. (b) Orthographic
projection onto the plane of the equator; O": Projection of the sun.

Firstly, the R sine of the sun’s altitude should be calculated from the length of
the shadow of the 12-angula gnomon. Let a be the sun’s altitude, and s the length of
the shadow of the 12-angula gnomon. Then.

12
Rsina= R X————— = §anku . —(1)

N122 + §°

The R.sin a is called $arku (not to be confused with the gnomon itself which is also
called fanku), and is equal to the segment OR in Fig. 10(a).

From the R.sin a, the quantity called cheda (“divisor”) is calculated. The cheda
is equal to the segment AO in Fig. 10. Since the angle AOR in Fig. 10(a) is equal
to the observer’s latitude, it is clear from the figure that

R

—(2)
{amba

cheda = Sanku X

where the lamba is the R.cosine of the observer’s latitude. The lamba is equal to the
segment EH in Fig. 10(a).

In order to make correction due to the ascensional difference, the quantity called
kujya (= ksitijya, “earth sine”) is used. The kujya is equal to the segment AB in Fig.
10. In the Fig. 10(a), it is clear that
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12 : S = EH : HC = BC : AB, and
BC = R.sin 3,
where & is the sun’s declination, and S the equinoctial midday shadow. So,

S x R.sin &

B —(3)

kujya =

From the cheda and kujya obtained as above, the segment BO in Fig. 10 is
obtained as :

BO = cheda * kujya . —(4)
(The kujya is added when & is south, and subtracted when § is north.)

Now, from this amount of BO, the segment CQ, which is the R.sine of the arc
corresponding to the time elapsed from or remaining until the sun’s crossing with the
6 o’clock line, is obtained. For this purpose, the dyu-jya (dina-vyasadala, “day-
radius”) is used. Let r be the dyu-jya. It is equal to the segment BD in Fig. 10. So,
we have

r=Rcos 8 =R - R.vers § . — (5

Using this amount, we can calculate the amount of CQ as :

R
CQ =T BO. —-—(6)

From the amount CQ, its corresponding arc C’Q’ is obtained from sine table. To this

amount, the ascensional difference (cara) (C'G’ in Fig. 10(b)) is corrected. The R.sine
of the ascensional difference (CG in Fig. 10) is obtained as follows.

R
CG = kujya x — . ——(7)
r

From this amount, the cara is calculated as its corresponding arc. Now, the arc Q’G’
in Fig. 10(b) is obtained as follows.

QG =CQ *cara. -—(8)
(The cara is added when & is north, and subtracted when & is south.)

The result Q’G’ is the arc corresponding to the time since sunrise or until sunset. So,
the time since sunrise or until sunset in terms of nadis is :
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i % o6 9
time = —— Q'G’. R
1 360 Q 9

This is the method given in the Padica-siddhantika (1V.45 47), Maha-bhaskariva
(I11.27-28a), Laghu-bhaskariya (111.12-15), Brahma-sphuta-siddhanta (111.38-40),
Vatesvara-siddhanta (I11.x.26(ii)-27, and 33), and Siddhanta-sekhara (IV.51 52).

By this method, the time until midday or since midday can also be obtained. Using
the amount of CQ obtained by the equation (6), the R.versed sine of the sun’s hour
angle can be calculated as follows. Let h be the sun’s hour angle (the angle ECQ’ in
Fig. 10(b)). Then, we have

R.vers h = R - CQ. ——(10)

From this amount, the sun’s hour angle (nata) is obtained from sine-table. Its
corresponding time is the time until midday or since midday. This method is given
in the Brahma-sphuta-siddhanta (111-40(ii)) and Siddhanta-Sekhara (IV.52(ii)).

It may be noted here that the cheda can be obtained in some alternative ways
besides the equation (2). One method to use the “hypotenuse” (of the shadow and
gnomon) at equinoctial midday and at desired time of desired day is as follows.

equinoctial-midday-hypotenuse
cheda = R x - —(11)
desired-hypotenuse

The rationale of this method is as follows. From the definition of the “hypotenuse”.
we have

equinoctial-midday-hypotenuse = 12 X , and

lamba

desired hypotenuse = 12 X

N ]
R.sin a

where a is the sun’s altitude at desired time. From these relations, it is clear that the
equation (11) is equivalent to the equation (2). The equation (11) is used in the
Brahma-sphuta-siddhanta (111.38-40) and Siddhanta-§ekhara (IV.51-52) (see above),
and also in the Brahma-sphuta-siddhanta (111.41-42) and Sisyadhi-vrddhida-tantra
(IV.31- 32) (see below).

There is an alternative method to obtain time, where the ista-antya is used. The
ista-antya (or sva-antya, the antya at desired time) is the segment GQ in Fig. 10(b).
The ista-antya at midday (GE in the figure) is simply called antya. There are two
methods to obtain the ista-antya. One method is as follows.

t
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R
ista-antyd = GQ = cheda X —. ——(12)
r

This relations is clear from Fig. 10(b), because
AO:GQ=BO:CQ=BA:CG=r:R.

After obtaining the ista-antya, it is corrected by the R.sine of the ascensional difference
(CG in the figure), and the segment CQ is obtained. From the amount of CQ, the time
is calculated as before. This is the method given in the Mahda-bhaskariya (111.28b-29),
Brahma-sphuta-siddhanta (111. 41-42), S'isyadhivrddhida—tantra (IV. 31-32), Vatesvara-
siddhanta (111.x.32 and 34), and Siddhanta-§ekhara (IV.53-54(i)).

By this method, the R.versed sine of the sun’s hour angle is obtained as follows.
R.vers h = antya — ista-antya, =~ ---—-- (13)
where A is the sun’s hour angle. From. this amount, the time until midday or since
midday is obtained as before. This is the method given in the Bhahma-sphuta-siddhanta

(111.43), Siddhanta-sekhara (IV.54(i1)), and also in the Surya-siddhanta (111.37-39).

The other method to obtain the ista-antya is as follows.

midday-hypotenuse
ista antya = X antya ----- (14)
desired-hypotenuse

The rationale of this method is as follows. From the definition of the “hypotenuse’’,
it is clear from Fig.10. that

R
midday-hypotenuse = 12 X —, and
y-hyp DT

R
desired-hypotenuse = 12 X — .
OR

Therefore,

midday-hypotenuse OR OA QG ista-antya

desired-hypotenuse DT DA EG antya

From this relation, the equation (14) can be derived. From the ista-antya, the R.versed-
sine of the sun’s hour angle is obtained as :

R.vers h = antya - ista-antya,
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and the time is obtained as before. This is the method in the Brahma-sphuta-siddhénta
(I11.44-45), Khanda-khadyaka (1.iii.15-16), Sisyvadhi-vrddhida-tantra (IV 33), Vatesvara-
siddhanta (111.x.29), Siddhanta-$ekhara (IV.55-56), Siddhanta-$iromani (Grahaganita,
I11.66-68), and Maha-siddhanta (IV.31).

iv) The horizontal gnomon

The gnomon which we have discussed above is the vertical gnomon, and it is the
standard gnomon in most of all classical Siddhantas. The horizontal gnomon is,
however, described in the Vrddha-vasistha-siddhanta.

The Vrddha-vasistha-siddhanta (111.61-62) reads as follows.V
ey fRAgafag affgar afes @
TgIRTTRISR  ACHHIIGeH |
Ty deussdl (—aisH’?) sE@ fAamwTiR—
fErmaafeasn: aeg@ I3 a6l ||
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“Now, a vertical rod (yasti) which has marks of [ghatikas of] a half-day is made. At
its top is a gnomon (Sanku), whose length is one twelfh of the rod. Its lower part is
marked for the reversed shadow. The mark where the gnomon-shadow falls indicates
the ghatikas elapsed or to elapse.

The R.sine of the [sun’s] altitude is multiplied by 12, and divided by the R.sine
of the zenith distance. The result is [the length of] the shadow in reverse in terms of
angulas.

The Radius is multiplied by 12, and divided by the R.sine of the zenith distance.
The result is the hypotenuse.”

The “reverse shadow” means the vertical shadow of the horizontal gnomon, in
contrast with the ordinary horizontal shadow of a vertical gnomon.

This text can be explained as follows. (see Fig. 11). Let Z be the R.sine of the
zenith distance of the sun, and A the R.sine of the altitude of the sun. Then we have
the following proportions.

12 : shadow = Z : A, and

hypotenuse : 12 = R : Z.
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Fig. 11. Sundial
Therefore, we have
shadow = 12 X A/Z, and
hypotenuse = 12 X R/Z.
These are the formulae given in the text. This instrument is a kind of the sundial.

The horizontal gnomon was used in the cylindrical sundial used in Delhi Sultanate
and Mughal periods.”? The horizontal gnomon of the Vrddha-vasistha-siddhdnta may
be a forerunner of that type of later sundial.

4. THE GRADUATED LEVEL CRICLE AND ORTHOGRAPHIC PROJECTION
1)  Introduction

We have seen in the previous section that the theory of the gnomon is related
with orthographic projection of the celestial sphere. Sometimes orthographic projection
of the celestial sphere is represented on the graduated level circle, and astronomical
observations and calcuations are carried on with the help of this circle. Let us see
some early forms of the orthographic projection of the celestial sphere on the level
circle which is related to astronomical observations. In this section, we shall discuss
the shadow-instrument of Aryabhata, Lalla, and Sripati, and the chatra-yantra of
Aryabhata, and lastly the observation and graphical calculation on the graduated level
circle described by Varahamihira.
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ii) The shadow-instrument

a)

The chaya-yatra of Aryabhata

A fragment of the Aryabhata-siddhanta of Aryabbata, quoted by Ramakrsna

Aradhya in his commentary on the Surya-siddhanta, has a description of the
chaya-yantra (shadow-instrument) as follows.)

“1'
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Construct a perfect circle (samamandalam vrttam) with radius equal to 57 angulas,
the number of degrees in a radian, and on (the circumference of) it mark the 360
divisions of degrees.

Then construct shadow-instument (for every day of the year) with the help of the
Rsine of the Sun's ascensional difference, the Rsine of the Sun's agra, and the
nadis of the duration of the day (in the following manner) :

Determine the Rsines of the Sun’s declination and of the Sun’s longitude from
the samavrttacchayakarna (i.e. the hypotenuse of the shadow of the gnomon
when the Sun is on the prime vertical) or from the vidikchayakarna (i.e. the
hypotenuse of the shadow when th Sun is in a mid direction).

On the perfect circle (drawn above), lay off the (Sun’s) agra in its own direction
(north or south) in the east as well as in the west (and at each place put down
a point). Again lay off the (Sun’s) agra corresponding to the Sun’s ascensional
difference in its own direction from the centre of the circle.
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4. With that end of the (Sun’s) agra (as centre) draw a circle passing through the
(two) points marked on the circle: this circle denotes the Sun’s diurnal circle. On
(the southern half of) that circle, put down marks indicating true ghatis with the
help of the corresponding positions of the gnomon. (In each position the gnomon
is to be held in such a way that the end of the shadow may lie at the centre of
the circle.)

5. These ghatis of the day, multiplied by six, are the degrees on the diurnal circle.
At the two points marked at the ends of the Sun’s agra in the east and west, are
the positions of the Sun at rising and setting.

6  (i). Half of the diurnal circle lying towards the south of the rising-setting line
(of the sun) is called the southern half of the diurnal circle.” (Translated by
K.S. Shukla)?

This chaya-yantra can be explained as follows.® (See Fig. 12.) Firstly, one should
draw a level circle (SENW) with readius of 57 aagulas, and graduate its circumference
with degrees. The points S, E, N, and W are the south, east, north, and west points
respectively. Then he should mark the end of the sun’s amplitude (agra) at the points
A and B in the east and west in proper direction (north or south). And also, he sould
mark the point C on the north-south line at the distance equal to the R.sine of the sun’s
amplitude (= OC) from the centre O. With the point C as centre, he should draw a
circle (ADB) which passes through the points A and B. The semi-circle ADB, which
has been drawn towards the south, is called the diurnal circle. The line AB is the sun’s
1is.ng-setting line. The point A corresponds to the sun’s rising point, and the point B
the sun’s setting point. On the semi circle ADB, the marks of ghatis should be made
in such a way that at that moment the shadow of the gnomon, which is placed at the
mark, lies at the centre of the level circle is O. By these marks the time can be
determined, but this figure should be changed every day.

In the above quotation, the construction of the circle ADB, especially the method
of fixing the point C, is unique in this Aryabhata-siddhanta, and different from the
methods of Lalla and Sripati which we shall discuss below. So, let us read a part of
the comment of Ramakrsna Aradhya, given after the quotation from the Aryabhata-
siddhanta, in order to confirm the construction of Aryabhata’s chdya-yantra. An
extract from Ramakrsna Aradhya is as folows.
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Fig. 12. Aryabhata’s Chéyi-yantra
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“IThe square of] the R.sine of the sun’s amplitude (lit.: the end of the sun’s agra)
is subtracted from the square of the Radius, and the square root [of the result] is the
koti. From the centre of the circle, the kori is stretched eastwards and westwards; and
from the end of the koti, the end of the sun ['s amplitude] is stretched in its own
direction; and one should lay it off at the circumference of the perfect circle. The end
of the sun ['s amplitude] corresponding to the sun’s ascensional difference is stretched
from the centre of the circle in its own direction on the south-north line, one should
make a mark at its end. With the end [as centre], one should draw a circle towards
the south upto the two marks of the end of the sun [’s amplitude]. This semi-circle
is called a half of own diurnal circle.”

From the above quotation, the method of construction of the chaya-yantra is
clearly understood (See Fig. 12 again). The R.sine of the sun’s amplitude is equal to
the segments GB and FA, when the Radius is OW, and the koti is equal to the
segments OG and OF.

This chaya-yantra appears to be an attempt to represent the sun’s diurnal circle
on the level circle, but the represented diurnal circle is not a projection of the actual
diurnal circle on the celestial sphere. The represented visible diurnal circle ADB is a
semi-circle, although the actual visisble diurnal circle on the celestial sphere is not a
semi-circle except in iquinoctial days. And also, the represented diurnal circle is
drawn outside the level circle when the sun’s declination is south. (See Fig. 12(b).)
This also may be considered to be a defect, because it is proper to represent the diurnal
circle inside the level circle. These defects are removed in the improved shadow-
iwatrument described by Lalla and Sripati as we shall see below.

b) The shadow-instrument of Lalla and Sripati
Lalla and Sripati described the shadow instrument without naming it. Lalla

described the shadow instument in his Sisyadhi-vrddhida-tantra (XXI1. 44-47) as
follows.”
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“44-45. (Severally) multiply the R.sines of the (Sun’s meridian) zentith distance and
agra by 60 and divide (each product) by the radius. Lay them off, in their own
directions, in a circle drawn (on level ground) with 60 angulas as radius (and having
the directions marked in it), the former from the centre and the latter from the east
as well as the west points. And through the three points (thus obtained) draw, as
before, the circle denoting the path of the gnomon. By laying off the same in the
contrary directions, one may draw the circle (denoting the path of the tip) of the
shadow (of the gnomon).

46. Beginning with the end of the agra (laid off in the east), graduate the circle
denoting the path of the gnomon with the (appropirate) signs by means oi e degrees
of time (of their oblique ascension). And then set up a gnomon (on that circle) in such
a way that the tip of the shadow may fall at the centre.

47. Then the degrees of time lying from the end of the agra (in the east) up to
the foot of the gnomon are the degrees of time of the (Sun’s) ascension. These degrees
of time as divided by six are the ghatis elapsed in the day (since sunrise).”’(Translated
by K.S. Shukla).®

This is a device to represent the sun’s circle on the 'cvel circle. The same device
was described by Sripati in his Siddhanta-sekhara (XIX.23 (i1)-25) as follows.”
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“From the end of the amplitude (agra-agra), the path of the R.sine of the zenith
distance [of the sun], which is constructed on the circle of 60-angula radius (7), should
be drawn.

One should draw it from the east or west end towards the other end. Here, the
R.sine of the [midday] zenith distance is measured on the north-south line from the
centre.
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The gnomon should be made according to the two measures (the amplitude and
the R.sine of the zenith distance.). A circle with the graduation of degrees corresponding
to the time should be drawn there from the end of the agra that is tyhe rising point.
The gnomon thus measured (gnomon whose length corresponds to the R.sine of the
sun’s altitude) should be erected there in such a way that the tip of the shadow falls
at the centre (of the level circle). The distance from the end of the agra up to it (foot
of the gnomon) is the degrees corresponding to the time. The degrees divided by 6
is the nadis elapsed since sunrise.”’

From the above quotations, it is seen that the device described by Lalla and
Sripati is basically the same, and is device to represent orthographic projection of the
sun’s diurnal circle on the level circle.(See Fig.13.)

Sun's
diurnal circle

>

Fig. 13. Lalla and Sripati’s shadow instrument

In Fig. 13, the circle ESWN is the level circle with the centre O. The circle ADB
is the represented diurnal circle, and the points A and B are the sun’s risng and setting
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points respectively. The segment OD is equal to the R.sine of the sun’s midday zenith
distance. So, it is clear from the figure that three points A, D, and B are exactly
orthographic projection of three points of the actual diurnal circle on the celestial
sphere at sunrise, midday, and sunset respectively. In reality, orthographic projection
of the diurnal circle is ellipse and not circle, but the represented diurnal circle ADB
has roughly been considered to be a circle by Lalla and Sripati. Practically, this will
be a reasonable approximation. On the circle ADB, a gnomon is placed in such a way
that its shadow falls on the centre O. If the end of the shadow should be cast on the
centre O, as directed by Lalla and Sripati, the height of the gnomon hocld be equal
to the R.sine of the sun’s altitude, and should be changed at every moment. This is
probably a device to show sphereics rather than a practical instrument for observation.

iii) Aryabhata’s chatra-yantra

In the fragment of the Ar)~ab11a;a:siddh&nta, quoted by Ramakrsna Aridhya in his
commentary on the Sirya-siddhanta, Aryabhata comments as follows", after describing
the chaya-yantra and also the dhanur-,yasti-, and cakra-yantra which we shall discuss
later.

TEHIIIGRY AIhl TeasE T |
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“Above have been stated the methods of obtaining the shadow of the gnomon and the
nadis (elapsed in the day) by the movement of the gnomon. Now will be stated the
method of finding the nadis (elapsed) and also the shadow (of the gnomon) by the
movement of the shadow of the gnomon (set up at the centre of the circle).” (Translated
by K.S. Shukla).?

It appears that the chatra-yantra is closely related to the chaya-yantra, and it is
also kind of representation of the celestial sphere. The chatra-yantra is also constructed
on the graduaied level circle, but the gnomon is fixed at the centre of the circel.

The descziption of the chatra-yantra (“uml}rella instrument”) in the Aryabhata-
siddhanta of Aryabhata, quoted in Ramakrsna Aradhya’s commentary on the Sirya-
siddhanta, is as follows.?
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“13. Construct a chatra-yantra (“an instrument resembling an umbrella”) by bamboo-
needles, mark (the circumference of) it with 360 divisions of degrees, and set it at the
centre of the (perfect) circle. Or, treat the perfect circle itself as a chatra-yantra.

14. The rod of the chatra-yantra, in the middle of it, equal to the radius, is the
gnomon; the northern half of the diurnal circle drawn through the end-points of the
(Sun’s) agra, laid off in the contrary direction (in the west and the east), is the so
called “path of shadow”. '

15. The nadis of the day, multiplied by six, are the degrees in (the diurnal circle
lying in) the north half of the chatra-yantra. Towards the end-points of the (Sun’s)
agra, in the west and the east, falls the shadow at sunrise and sunest respectively.

16. The end (of the Sun’s agra) in the west is (therefore) called the “‘setting point
(asta)”; and the end (of the Sun’s agra) in the east the “rising point (udaya)”. From
the “setting point” to the “rising point” (on the northern half of the diurnal circle) lie
(the graduations of) the degrees of time in a chatra-yantra.

17. The shadow cast by the gnomon, situated in the middle of the chatra, is
always the shadow for the desired time. The degrees (on the diurnal circle) intervening
between the end of the shadow and the “setting point”, divided by six, give the nadis
elapsed in the day.” (Translated by K.S.Shukla)®

Tamma Yajvan also briefly mentioned the chatra-yantra of Aryabhata in his
commentary on the Sirya-siddhanta as follows.”
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“The Chatra-yantra (i.e. the Umbrella) is constructed like the Cakra-yantra with a
vertical rod at its centre. The rod should be made as big as there are digits in a radian”.
(Translated by K.S. Shukla)®.

From the above quotations, it is seen that the chatra-yantra of Aryabhata consists
of a rod and a circle whose circumference is graduated with degrees. The height of
the rod is equal to the radius of the circle, and the rod is fixed at the centre of the
circle which is horizontal. Aryabhata says to draw so called “path of shadow” on the
ground through the end-points of the sun’s agrd, but evidently this is not the actual
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path of the shadow, because the actual path of the shadow is hyperbola. It may be that
the “path of shadow” is a circle only to indicate the direction of the shadow regardless
the length of the shadow. If so, it can be drawn through the end-points of the sun’s
agra, just like the chaya-yantra of Aryabhata which we have seen before.

The chatra-yantra of Aryabhata appears to be similar to the pitha-yantra of later
authors, which we shall see in the section of the circle-instruments and its variants
later, at first sight, but there is an important difference between them. The most
important feature of the chatra-yantra is that the height of the central rod (or gnomon)
should be equal to the radius of the level circle. On the contrary, the most important
component of the pitha-yantra is the graduated circle for the observation of azimuth,
and the height of the central rod may be arbitrary. So, the chatra-yantra of Aryabhata
may be considered to be an attempt to represent the celestial sphere in visible form,
rather than an instrument for actual observation.

iv) The graduated level circle of Varahamihira

Varahamihira described the graduated level circle, where graphical calculations
and observations are carried on, in this Padica-siddhantika (XIV.1-11). Thibaut and
Dvivedin,” and Neugebauer and Pingree? translated this tex1, but both interpretations
seem to be unsatisfactory, and, even after emending the text, some of the rules have
remained obscure. Naugebauer and Pingree commented that some of these procedures
are “incorrect”. In 1987, I presented a paper in a seminar held at Calcutta,” and
showed that all the rules of Varahamihira give either correct values or, at least,
reasonable aproximations. In fact, all verses (XIV.1-11) refer to graphical calculations
carried on the graduated level circle, chiefly based on the theory of orthographic
projection. So, I would like to present my interpretation here, which I first presented
at the seminar, in revised form.

In the following quotations of the text, the original reading of the manuscript
given in Thibaut and Dvivedin’s edition® is shown firtly, and my emendation is shown
within brackets. The usual sandhi-rule is applied, and the avagraha is silently added
when necessary.

The first four verses (XIV.1-4) have been correctly translated by Thibaut and
Dvivedin, and Neugebauer and Pingre. So, it will suffice to quote Thibaut and
Dvivedin’s translation here. The text (XIV.1-4), as emended by Thibaut and Dvivedin,
and their English translation is as follows.
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“l. Draw upon the ground a level circle with a diameter one hundred and eighty
angulis long, and mark upon its circumference the signs (degrees, etc.) at equal
distances, and also the degrees of declination (of the signs).

2. Further describe from the centre (of the first circle) three other circles, taking
for their Radii the string running (at right angles) from the string, which marks the
north-south line, to those points on the circumference of the first circle where the
degrees of declination (of the signs of the ecliptic) are marked; and mark those circles
with the degrees, as you did with the first one.

3. Thereupon draw a line from the centre towards the latitude (i.e. that point of
the first circle which marks the latitude of the given place), and lengthen it up to the
sphere. Take that piece which is due to the declination (of a given sign of the ecliptic)
and is intercepted by the line of latitude and the north-south line;

4. Double it and mark it off on the circle belonging to that sign; multiply half
the degrees of the corresponding arc by ten. The result represents the vinadikas of
ascensional differences in the case of the first sign; in the case of the two other signs
the vinadikas come out mixed.”’ (Translated by Thibaut and Dvivedin)®

The above text can be explained as follows. (See Fig.14) Firstly, one should draw
a level circle (ENWS in Fig 14) with the radius of 90 angulas, and graduate its
circumference. Then, he should mark three declination-points (one of which is B in
Fig.14) corresponding to the declinations for the end-points of the first three zodiacal
signs, and measured form the east or west cardinal point. (EOB=3, where d is the
declination.)
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3

Fig. 14.

Then, he should draw a vertical line (BD) to the north-south line (NS) from the
declination-point (B). So, the segment BD is equal to R.cos 8, that is the radius of
the diurnal circle on the celestial sphere. The length of the segment BD is taken as
the radious (OA) of a circle (AFG) which represents the declination, and such three
concentric circles, correponding to three declinations, are drawn with the centre O.
These three circles are also graduated with degrees.

Then, he should draw a line (OH), which is inclined by the degrees of the
observer’s latitude towards the side where declination-points are marked. (NOH=g,
where @ is the observer’s latitude.) Then he should take a segment (DC=/) of the line
BD, which is intercepted by the lines ON and OH. Now, the amount of the segment
[ is expressed as:

! = Risin d. tan o.

Therefore, the amount of / is equal to the kujya (“earth-sine”). (This relation can be
understood from Fig.10 (a). There,the segment BC is R.sin 8, the angle ACB is ¢, and
the segment AB is the kujya. Therefore, the kujya is equal to R.sin 8. tan @.)

(See Fig.14 again). Now, he should double the segment /, and stretch it on the
correspnding declinaton-circle as FG. A half of its corresponding arc is the ascensional

R
difference () of the first sign. Indeed, the amount ( kwjya X —) is equal to the R.
r
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sine of the ascensional difference, as we have seen in the previous section of the
present paper, and its corresponding arc is the ascensional difference. This calculation
has been done graphically. In the case of the 2nd and 3rd signs, the result is the sum
of the ascensional differences of the 1st, 2nd, and 3rd signs respectively. This fact is
expressed as “mixed” in the text.

Now, let us proceed to the verses (XIV.5-11). As regards these seven verses, I
shall present my own translation. The verse (XIV.5) reads:

TS v (T 94—
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(Note: * — emendations suggested by Thibaut and Dvivedin)

“The nadis [since sunrise} multiplied by six are degrees. The R.versed-sine of them
(taj-jya) subtracted from the radius and joined to the zenith distance of the sun at
midday (madhyandint) is the R.sine of the sun’s zenith distance (chaya). In order to
find nadis, it (R. sine of the sun’s zenith distance at desired time) is to be diminished
by that (R.sine of the sun’s midday zenith distance).”

In this verse, the meanings of two words, jya and chaya, should be properly
understood in this particular context.

In this verse, the word “chaya” does not mean the shadow of a gnomon, but the
R.sine of the sun’s zenith distance, just like the word Sanku (gnomon) sometimes
means the R.sine of the sun’s altitude. The absence of the length of the gnomon in
this formula is explained only by this interpretation. The word chaya is sometimes
used in the same meaning in other works also. For example, the Sisyadhi-vrddhida-
tantra (XX1.49) reads as follows.®

“yastis trijya karno lambo na krtiviSesapadam anayoh /
drgjya chaya prakparalambanipatantaram bahuh 1/ 49 /1

“The yasti equal to the radius, is the hyotenus; the perpendicular (dropped on the
ground form the upper end of the Yasti) is the (great) gnomon (i.e. the Rsine of the
Sun’s altitude); the square root of the difference of their squares is the (great) shadow,
i.e. the Rsine of the (Sun’s) zenith distance; and the distance between the east-west
line and the foot of the perpendicular is the bahu.”( Translated by K.S.Shukla)?

From this quotation, it is clear that the word “chaya” sometimes means the R.sine
of the sun’s zenith distance.
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=3,

The word “jya”is usually used for the R.sine, and the word “utkramajya” is used
for the R.versed-sine. However, it seems that the word jya means R.versed-sine in this
verse. Thibaut and Dvivedin suggested that jya means R.versed-sine in this verse,
although they took chaya as actual gnomon-shadow. In the next verse (XIV.6), the jiva
(=fya) is defined as the distance between the tip of a certain “chaya’” and the “horizon”,
and this fact also obliges us to take jiva or jyd in the sense of R.versed-sine. The word
Jya is sometimes used for the R.versed-sine in other text also. For example, the Maha-
siddhanta (IV.31) of Aryabhata II reads as follows.®

“carajivodvrttasrutighatas canryahrto dyudalakarnah /
bhakto ’bhistasravasa phalonitantya natajya syat // 311/

“Divide the product of the sine of ascensional difference and the hypotenuse [of the
shadow when the sun crosses] the east and west hour circle by the day-measure; [the
result is] the hypotenuse [of the shadow] at noon. Divide {the same product] by the
hypotenuse [of the shadow] at the given time, and reduce the day-measure by the
quotient; [the result] is the [versed] sine of the hour-angle” .(Translated by Sreeramula
Rajeswara Sarma)®

This is the method to obtain the R. versed-sine of the sun’s hour angle, which
we have discussed in the previous section of the present paper. In the above translation
of S.R.Sarma, the word “day-measure” is the translation of antya, and the “[versed]
sine of the hour-angle” is the translation of nara-jyd. So, the above rule can be
expresed as follows.

. _ midday-hypotenus X antya
“nata-jya’ = antyva —

desired-hypotenuse

In this context, it is clear that the word “nrata-jya” means the R. versed sine of
the sun’s hour angle, as was translated by S.R.Sarma. From this quotation, it is clear
that the word “jya” sometimes means the R. versed sine.

Assuming the above interpretation, the phrase “rajjva vyasardha-Sodhita” can be
expressed as folows.

R - R.vers (6t) = R.cos (6t),  --—-- (N
where ¢ is time elapsed since sunrise in terms of nadis.

Expression (1) gives the east-west component of the R.sine of the sun’s zenith
distance, exactly in the equinoctial days, and roughly in other days. (In an arbitrary

day, 6t should actually be substituted by the angular distance between the east cardinal
point of the horizon and sun.)
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Then, Varahamihira says to “join” (sametd) it to the midday-chaya. Presumably
he meant that it is to be joined graphically to the midday-chaya perpendicularly, and
not arithmetically. Since the variation of the north-south component of the chaya is
small around midday, this method gives more or less approximate value of the chaya
around midday.

In mathematical expression, Varahamihira’s method gives the following formula.

vV {R - R.vers (61)}2+ M?

It

chaya = Rusin {

vV {R.cos (60)}2 + M2, ----- (2)

where { is the sun’s zenith distance, and M the R.sine of the sun’s midday zenith
distance ( chaya at midday)

The correct formula for equinoctial days is as follows.

5

Rsin (6 :
Rsin = \/{R.cos 60} + (—-S-%—(—t) X M) ..... (3)

The variation of the north-south component (R.sin (6t)/R) in this formula has
been omitted in Varahamihira's formula (2).

Now, the Pariica-siddhantika (XIV.6) reads :

BTATE R~ (CERS)  g=<R—
ST HT T |
a A€ yrad: (Gran)*
YO Al (@Y urge (IR 6 | |

(Note: * — emendations suggested by Thibaut and Dvivedin. ** — emendations suggested
by Neugebauer and Pingree.)

“The sixth part of the degrees of the arc corresponding to the R. versed-sine
(jiva), which is the distance between the tip of the chaya (so diminished) and the
horizon, is nadis. Towards the east, elapsed nadis are obtained, and towards the west,
remaining nadis are obtained.”

This is just the reverse of the previous verse (XIV.5). The “chaya (so diminished)”
means the east-west component of the R.sine of the zenith distance of the sun. (From
the R.sin of the sun’s zenith distance at desired time, the midday-chaya, which is
considered to be the north-south component of the chaya, is graphically diminished
in order to get east-west component of the chaya.) The “distance between the tip of
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the chdyd and the horizon” means the expression (R—chaya). Here, the expression of
the “chaya (so diminished)’’ is (R—R.vers (6t)), as is evident from our discussion on
the previous verse (XIV.5). So, the value of the expression (R-chaya (so diminished))
is exactly the R.versed-sine of the arc corresponding to the time elapsed since sunrise
or remaining until sunset.

Now, the Pafica-siddhantika (XIV.7) reads:

fordiia wwe—

foiaRTamATe—  (STpATE—)* Y@ (CImR)** |
qarreniEAn: (CfRTg)*

YIRS (CHr)* hHE: (FEE)* 71|

(Note: * — emendations suggested by Thibaut and Dvivedin. ** — emendations suggested
by Neugebauer and Pingree.)

“The horizontal line (tiryag-rekha) which is parallel to the north-south line is to
be drawn up to the circle which represents the declination (lit.: declination-line,
apakramamsa-rekha). The degrees of the arc corresponding to it are to be multiplied
by ten. [The result is} the vinadika of the [right-] ascension of the signs in order.”

This verse can be explained as follows. (See Fig.15) The word apakramarmsia-
rekha literally means a “declination line”. We already have threefold concentric
circles which have been drawn under the instruction of vs.2, and can rightly be called
“declination-lines”. In fact, they are the orthographic projection of the diurnal circles
of the end points of the signs onto the plane of the equator. (We should recall that
the radii of those circles are R.cos &, where & is the declination of the end points of
the signs.)
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Now, let us mark a point P on the circumference of the level circle in such a way
that it has 30-degree distance from the west (or east) cardinal point. (W©P=30° in Fig.
15) Then draw a horizontal line (tiryag-rekha) PP’, which is parallel to the north-south
line (NS), up to the “declination-line” (dotted circle in Fig.15) which corresponds to
the declination of the end point of Aries. Thus, we obtain a point P’, which is the
orthographic projection of the end point of Aries onto the plane of equator, when the
west cardinal point W is considered to be the first point of Aries.

This fact is easily understood as follows. (See Fig. 16.) If P’ is the orthographic
projection of the end point of Aries, OA=R.cos 30° and OP’= R.cos 3, where & is the
declination of the end point of Aries, as is evident from Fig.16. The segments OA and
OP’ in Fig.15 are exactly as such. Since this diagrm (Fig.15) is the orthographic
projection onto the plane of equator, any point which is projected on the same radial
line has the same right ascension. Therefore, the right ascension of the end point of
Aries is WOP” or WOP”. The arc WP is the “tac-capa” in the text. The right
ascension of the other signs are also obtained by the same method. Of course, this
method gives the exact value.

Fig. 16.

Now, the Parica-siddhantika (XIV.8) reads:

AT (FeaT=gTgl) den
PEEFEdl At T dd@ T (@D
HEEPRIGES el (°m§?1a1q)** .
fgarR Q)** IREFIRd: (FHgRan) 1181
(Note: * — this reading appears in a manuscript, and has been mentioned in the

footnote in Thibaut and Dvivedin’s edition. ** — emendations suggested by Neugebauer
and Pingree)
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“A gnomon is to be moved elsewhere in such a way that the tip of its shadow
coincides with the centre (of the graduated level circle). From the string which passes
through [the centre and] the tip of the gnomon, the equinoctial [midday angular]
distance is to be represented on the circle.” :

This verse is metrically defective. In order to correct it, we should add a particle,
say hi or tu, before ratha, and should omit ratah and yas. Anyway, meaning of the
text does not change.

In the word “visuva-antara”, the meaning of “visuva”can be interpreted in two
ways. One is “the equator”, and in this case the word “visuvantara” means “the
distance from the equator”. The other is “the equinox”, and in this case the word
“visuvantara” means “the equinoctial distance” or a certain distance which is observed
on equinoctial days. When we compare it with the expression visuvacchaya which
means the equinoctical midday shadow, it seems, most probably, that the “visuvantara”
is “the equinoctial midday angualr distance which corresponds to the visuvacchaya’,
that is the zenith distance of the midday sun on the equinoctial day. In vs. 10,
Varahamihira says that the visuvantara is the aksa (the observer’s latitude), and this
fact supports our interpretation.

A

If the above interpretation is correct, this verse tells a method to obtain the sun’s
midday zenith distance on equinoctial days. At the equinoctial midday, the gnomon
is placed in such a way that the end of its shadow coincides with the centre of the
level circle. Then the centre and the top of the gnomon is joined by a string. Then
the angle between the string and the vertical gnomon is equal to the equinoctical
midday zenith distance of the sun. Probably, the string was fallen down on the
graduated level circle, and the angle was read from the graduation of the level circle.

A more practical method for the same purpose is explained in the next verse
(XIV.9) as follows.

fooeies o

BRI SHEIIR: I (UT)* |
qHIH  eaTq

TRARYCHFATANRE: 119 1]

(Note: * — emendation suggested by Thibaut and Dvivedin.)

“Lay off the [equinoctial midday] shadow [of a gnomon, which is erected at the
centre of the level circle,] towards the north, and another gnomon (of the same height)
is to be fallen down [perpendicularly to the shadow] from the tip of the shadow. Its
hypotenuse should be straightly extended with a string from the cenire up to the
circumference [of the level circle]”.
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The meaning of this verse is clear. If the second gnomon is fallen down towards
the east, the arc between the east cardinal point of the level circle and the intersection
of the string and the level circle indicates the zenith distance of the midday sun.

The next verse is the continuation of this verse. The verse (XIV.10) reads as
follows.

afgEmw— (CyarR—) 9
SO SETEdd  HHIU TSI |
I B g (gt ST
Aeefdes TgA 91 (11011

(Note: * — emendations suggested by Thibaut and Dvivedin.)

“Its equinoctial [midday zenith] distance (visuvantara) is the terrestrial latitude.
Similarly, the [midday] shadow should also be determined from the terrestrial latitude.
Knowing the declination [of the sun] on a desired day, which may be greater or
smaller than the latitude....(to be continued to the next verse.)”

This verse seems to be a request to obtain the declination of the sun from
observation. Knowing midday zenith distance of the sun on equinoctial days, as was
instructed in the previous vevse, the difference between the zeniht distance of the
midday sun on the desired day and that of the equinoctial day should be obtained. This
difference is the sun’s declination. Vardhamihira says that it “may be greater or
smaller than the latitude”, and probably he refers to the direction of the declination
rather than its absolute value. When the direction of the declination is south, it is in
the same direction as the sun’s equinoctial midday zenith distance (i.e. the observer’s
latitude) on the celestial sphere, and is considered to be “greater” than the latitude.
When the declination is north, it is in the opposite direction, and is considered to be
“smaller”.

The next verse (XIV.11) is a continuation of this verse as follows.

aogr (aown)* faea)
fyaeeRea wefa aRkET |
TEgerAE  (0A)*
9 S WEAMEE (111 1]

(Note: * — emendation suggested by Thibaut and Dvivedin)

“.... place its R.sine (R.sine of the sun’s declination) as a horizontal line
[perpendicularly] to the line of the equator, [and find out] a point where it touches [the
line of ecliptic]. Its corresponding arc is known as [the longitude] of the sun, according
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to the division of the sphere (according to the quadrant of the ecliptic where the sun
is located)’

The most probable interpretation of this verse is that the calculation is carried on
a diagram which is the orthographic projection of the ecliptic and the equator onto the
plane of solstitial colure. (See Fig. 17).

E

7 LD

Fig. 17,

In Fig. 17, the line OE is the projection of the equator, and OB the projection
of the ecliptic. The first point of Aries is projected on the centre O, and the first point
of Cancer is projected on the point B. The angle BOE is the obliquity of the ecliptic
(€), and the segment BD is R.sin €, when R is the radius of the circle. Let the segment
AC be R.sin 8 (taj-jya in the text), where J is the declination of the sun. Then the
segment OA is R.sin A, where A is the longitude of the sun. This fact is easily
understood, because we know the following equation by spherical astronomy (or by
Hindu spherics using orthographic projection).

sin &
sin A =

sin €

Therefore, if R.sin 8 is known, R.sin A can be obtained graphically. Then, the sun’s
longitude is obtained as:

0OA
A = arc sin—
R

This calculation is also done graphically. Firstly, one should double the length of the
segment OA, and place it to the graduated level circle as a chord. Then, he should
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read its correspondintg arc from the graduation, and halve it. The result is the desired
arc sine (tac-capa in the text).

From the above discussions, it now appears that all the verses (Pafica-siddhantika,
XIV.1-11) refer to graphic calculation on the graduated level circle, and given either
an exact value or a reasonable approximation. The rationale of these methods can be
understood as an application of the theory of orthographic projection.

v) Conculsion

From the above discussions, it is seen that the celestial sphere was represented
on the graduated level circle already at the time of Aryabhata and Varahamihira. This
idea to represent the celestial sphere has an important meaning for the development
of the vasti and circular and spherical instruments. The yasti, which we shall discuss
below, is a representation of the Radius of the celestial sphere, and it presupposes
certain coordinates such as the graduated level circle. The circular instruments, such
as the cakra described by Aryabhata and Varahamihira etc., are also another device
to represent the celestial sphere in visible form. Aryabhata and Varahamihira did not
describe the armillary sphere, but they described three celestial globe which directly
represents the celestial sphere. These instruments are closely related to each other. In
this connection, the shadow-instrument of Aryabhata etc., the chatra-yantra of
Aryabhata, and the graduated level circle of Varahmihira, which were little noticed
by historians of astronomy, should be paid much more attention.

5. THE STaFF
1) Introduction

The staff (vasti-yantra) is a representation of the Radius of the celestial sphere,
and is used for determination of the position of heavenly bodies, and also for terrestrial
surveying.

A similar instrument called nalaka-yantra (tube instrument) has been described
in the Triprasnadhyaya of some Siddhantas.

A variation of the staff is the §alaka-yantra which is a combination of a horizontal
staff and another stick which is perpendicular to the former. Another variation is the
Sakata-yantra which is the V-shaped staffs.

Bhaskara II made a staff which is supposed to be in the rectangular coordinates,
and called it dhi-yantra.

i) The yasti-yantra
a) The Aryabhata-siddhanta

Aryabhata described the yasti-yantra in his Aryabhata-siddhanta, quoted by
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Ramakrsna Aradhya in his commentary on the Sirya-siddhanta, as follows."
gagNIEd  AfeRErsurensea a1 18 | |

frene sef=E grt afie: sofwag=f: |
TEHRRT oI B fegqeam w=119 ||

TN vt R T |

“The yasti-yantra which is equal in length to the semi-diameter of the (nerfect) circle
with as many graduations of angulas as there are degrees in a radian (i.e.57) should
be held at the centre of the circle towards the Sun. The yasti then denotes the
hypotenuse, its elevation denotes the gnomon, and the distance from the foot of the
gnomon up to the centre of the circle always denotes the shadow (of that gnomon).
The degrees intervening between the end of the yasti and the rising point of Sun,
divided by six, give the ghatis elapsed in the day.” (Translated by K.S. Shukla)?

It is clear from Fig. 18 that the R sine of the sun’s altitude (“gnomon”) and R.sine
of the sun’s zenith distance (“shadow”) can be determind ¥, the staff which represents
the Radius.

Fig. 18. OA: “Hypotenuse” = Yasti, AB: “Gnomon” = R.sin a, OB: “Shadow” = Rusin §
b) Brahmagupta
Brahmagupta explained the yaszi-yantra in detail in his Brahma-sphuta-siddhanta

(XXI11.19-38).” Firstly, he explained the method of the observation of the sun (XXII.19-
23). The yasti is introduced in vs.19 as follows.

FeRadTl AewsrEEd: A |
ICATRIRAATAN BRI = 11191 |
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“The yasti is to be kept obliquely in such a way that it may not cast shadow. The great
gnomon (fanku, R.sine of the sun’s altitude) is the vertical line [dropped from the tip
of the yasti]. The distance of it [from the foot of the yasti] is the drg-jyva (R.sine of
the sun’s zenith distance). The radius of the diurnal circle and the agra (R.sine of the
sun’s amplitude) should be calculated by proportion.”

The relation between the yasti, Sanku and drg-jya is easily understood from
Fig.18. The method to calculate the radius of the diurnal circle (= R. cosine of the
sun’s declination) and the agra is not given here, but given in the Tri-prasna-adhyaya
as we have discussed under the section of the gnomon.

The graduated level circle is introduced in vs. 20 as follows.

uRferen games IfcaraER TR |
wWERENY afeameatesd gl 1201

“Draw a circle, whose radius is equal to the length of the yasti, on the ground. From
its centre, draw another circle, whose radius is equal to the radius of the dirunal circle,
and mark 60 ghatikas on its circumference.”

Here, the radius of the diurnal circle is of course the radius of the diurnal circle
on the celestial sphere. With the help of this circle drawn inside of level circle, an
arc on the diurnal circle can be converted into an arc on the great circle which is
represented by the level circle. In other words, it is converted into angular distance.

Now, the method to obtain time is given in vs. 21 a follows.

ey STrseRTTRREESd g |
afed fgdragy I waRa: A (21

“On the sphere whose Radius is equal to the length of the yasti, the distance between
the rising (or setting) point and the tip of the yasti is represented by an arc (dhanus).
On the second circle (i.e. the diurnal circle drawn inside the level circle), the ghatikas
elapsed or remaining, in the forenoon or afternoon respectively, are measured.”

Here, the celestial sphere is supposed to be above the graduated level circle.(See
Fig.19) On the level circle the sun’s rising point B (or setting point B”) should be
marked. (The angle EOB is equal to the sun’s amplitude which has been requested to
calculate in vs.19.) When the yasti is directed towards the sun, the arc BA can be
measured. This is an arc of the diurnal circle, and it should be converted into the arc
of the equator which is a great circle. This conversion is done graphically. The arc
BA is placed on the “second circle” drawn inside the level circle (dotted circle in Fig.
19), and its corresponding angle is read from the graduation. The result is equal to the
arc corresponding to the time elapsed since sunrise or remaining until sunset.
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Dmr’r\aj
circle

Level circle
Fig. 19. ZEOB = Z WOB’ = amplitude, OA: Yasti, AB: Dhanus, r = radius of the diurnal circle

The same conversion can be done arithmetically aiso as follows.(XXII1.22)

TR WEREEIRTG SeReaed B3t |
Geramaren fgqom: vefal wiran afeet (1221

“Alternatively, a half of the yasti’s distance (i.e. a half of the chord of the “dhanus”
obtained above) is multiplied by the Radius, and divided by the radius of the diurnal
circle. Then the degrees of its corresponding arc are multiplied by two, and divided
by six. The result is ghatikas.”

Here, » '.auf-chord (i.e. sine) of the great circle is first calculated, and it is
converted into arc by a sine-table. The obtained degrees correspond to a half of the
time elapsed or remaining. Therefore, it is multiplied by 2. Then the degrees are
converted into ghatikas by multiplying (60/360) = (1/6).

Another method to obtain time is given in vs. 23 as follows.

Fftcard @1 aRRe Tew@sIETRal Jord |
JEAEgIgT uiee e wadwn 123 11

“Alternatively, on the level circle whose radius is equal to the length of the yasti, the
ghatika is obtained from the angulas of the Sarnku (R.sine of the sun's altitude) etc.
Placing a string vertically from the foot [of the Sanku up to the tip of the yasti as the
representation of the R.sine of the sun’s altitude}, the ghatikas elapsed or remaining
in a day [are obtained].”
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Here, Brahmagupta says to obtain time from the R.sine of the sun’s altitude
vhich is determined by the yasti-yantra, but the method of the calculation is not
explained here. The method of the calculation is explained in the Triprasnadhyaya as
we have discussed under the section of the gnomon.

After the above text, Brahmagupta desrcibed the V-shaped staffs in vss. 24-26.
We shall discuss the V-shaped staffs under the division of the §akata-yantra later.

In vs. 27, Brahmagupta explains the method to determine the directions by the
yasti-yantra as follows.

IYATT] T B D, IR

fa

IR AW AR |1 | 27 | |

“There are two vertical Sankus (i.e. strings representing the R.sine of the sun’s altitude)
dropped from [the upper end of] the yasti, [whose lower end is] fixed at the centre
[of the level circle], at the points [where the foot of the §anku is ] entering into and
gcing out from [the level circle]. From the effect of the declination (kranti-vasat), the
east and west should be determined, and from the fish-figure (i.e. perpendicular
bisector), the south and north should be determined.”’

This method is the same as the usual Indian circle method. The meaning of the
phrase “from the effect of the declnation” (kranti-vasat) is not quite clear. The same
phrase appears in the Brahma-sphuta-siddhanta (I11.1) and (XXI.60) also. It might be
supposed at first sight that it refers to the correction due to the change of the sun’s
dcclination within a day,” but it is unlikely. It is more likely that it refers to the
parallel shift of the east-west line according to the sun’s declination.

Brahmagupta continues to explain spherics in connection with the yasti in vss.
28-31. The verse (XXII. 28) reads as follows.

TEFHAAITRY R BaeNHS ore gfed |
greTRUIG: Wi UE QATIRT P | 28 1 |

“The difference or sum of the §ankutala and agra, when their directions are opposite
or same respectively, is the bhuja. The square of the bhuja is substracted from the
square of the drg-jya which is the hypotenuse, and its square root is the koti on the
east-west line.”

This text can be explained as follows. (See Fig.20) In Fig.20, the point Z is the
zenith,O the observer, and N,E,S, and W the north, east, south, and west cardianl
points on the horizon respectively. Let X be the position of the sun on the celestial
sphere, and E’W’ the sun’s rising-setting line.So, the segment OX may be considered
to be the yasti. Draw a vertical line XA from the point X up to its intersection with
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the ground A, and call the segment XA the sarnku (great gnomon, or the R. sine of
the sun’s altitude). The distance between the lines EW and E’W’ is the agra (R.sine
of the sun’s amplitude), and is equal to the segment BC in the figure. The distance
of A from the rising-setting line E'W’ is called fankuzala (AC) , and the R.sine of
the sun’s zenith distance is called drg-jya (OA).

L

Ec{unor

Fig. 20.

In this verse, the triangle AOB is considered, where AB is the bhuja (base), AO
is the karna (hypotenuse), and OB is the kosi (upright).

Two rules stated in the text can be expressed as follows.
bhuja = Sankutala * agra,

where the agra is added when the sun’s declination is south, and substracted when the
sun’s declination is north.

koti = \ (drg-jya)* — (bhuja)’.
These two rules are easily understood from Fig. 20.

Brahmagupta continues to explain spherics. The next verse (XXII.29) reads as
follows.

IAERFISFERR B AEHA SHAGOTH |
fogaeeriid @1 fAearRaTagAo 1129 11
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“The distance between the rising-setting line and the Sanku (great gnomon) is divided
by the length of the Sasnku and multiplied by 12. This is the equinoctial midday
shadow. It is also knowable without rising-setting line [as explained below].”’

As the inclination of the diurnal circle to the ground is the same as the inclination
of the equator to the ground, the proportion XA:AC in Fig. 20 is equal to the
proportion 12: equinoctial-midday-shadow. Hence the equinoctial midday shadow of
12-angula gnomon is obtained as above.

The alternative rule to obtain equinoctial midday shadow is explained as follows
(vs.30).

ARRIIE HAARg aaegfa: Far=afeem: |
EIRERPET fAYaeor TreaaaxiawTo {1301 |

“The difference or the sum of the two differences between the east-west line and the
foot of the $anku (great gnomon), when their directions are the same or opposite
respectively, is multiplied by 12 and divided by the difference of the two Sarnkus. This
is the equinoctial midday shadow.”’

This text can be explained as follows. (See Fig.21) One should determine the
Sanku (R. sine of the sun’s altitude) with the help of the yasti-yantra twice a day. Then
the distance of the foots of the two sankus (AA’ in Fig. 21) is obtained, as AO+QOA’
or AO-A’O in Fig.21 according to the directions of A and A’. And also, the difference
of the length of the two Sankus (XD in Fig. 21) is obtained. As the proportion XD:DX’
is the same as the proportion 12: equinoctial-midday-shadow, the equinoctial midday
shadow of 12-angula gnomon is obtained as follows.

L . 12 x AA’
equinoctial-midday-shadow =——-—

Horizon

Meridian

Fig. 21.
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Now, Brahmagupta explains the method to determine the sun’s declination as
follows (XXII. 31).

BRI IR T |
U Aftegd difasard W@ grEd 31|

“The distance between the Sarnku (great gnomon) and the east-west line is added to
the Sankvagra (= Sankutala) when the sun is in the northern hemisphere, and subtracted
when in the southern hemisphere. It is multiplied by the lamba (R.sine of the observer’s
colatitude) and divided by the yasti (Radius). This is the R.sine of the declination
(kranti-jya). From this, [the position of] the sun may be known.”

This text can be a explained as follows. (See Fig.22.) In Fig.22, the segment OE is
equal to the R.sine of the sun’s declination (kranti-jyd), and the segment ZD is equal
to the R.sine of the observer’s colatitude (lamba), because the angle ZOD is the
observer’s colatitude. As the triangle ODZ is similar to the triangle CEO, we have the
following proportion.

Z
% P
D
E
Horizeon . N
A 0 ¢
B 4}%
7N
Q)"' d[‘q h
Fig. 22.

OE: OC =ZD:ZO=ZD:R.
Therefore, the kranti-jya OE is obtained as follows.

OC x ZD
- R

Brahmagupta further explains surveying by the staff as we shall see later.
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c) Lalla and Sﬁpali

Lalla described the yasti-yantra in his Sisyadhi-vrddhida-tantra (XX1. 480-50).9
He first explains to obtain the R.sine of the sun’s altitude (nr, “man”), and the R.sine
of the sun’s zenith distance (chdya or drg-jya). Then, he says to multiply the distance
between the rising-setting line and the foot of the S§anku by 12 and divide by the length
of the Sanku (= nr). This is the equinoctial midday shadow of 12-angula gnomon.

Sripati also described the yasti-yantra in his Siddhanta-Sekhara (XIX. 21-23 (i)
as follows.®

N .
fumg ga IR |
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“After drawing a circle with marks of cardinal points and graduation of degrees on
the levelled ground, the yasti, which is very smooth, [equal to the radius of circle,]
and having graduation of angulas in a radian, should be placed at its centre in such
a way that it does not cast shadow.

The vertical line from its (yasti’s) top is called Sanku (great gnomon, R.sine of
the sun’s altitude).The distance between its (Sanku’s) root and the centre [of the level
circle] is called drg-jva (R.sine of the sun’s zenith distance). Its (§anku’s root’s)
distance from the east-west line is called bhuja. Its (§anku’s root’s) distance from the
rising-setting line is called Sankvagra.

The Sankvagra is multiplied by 12 and divided by the length of the great gnomon.
This is exactly the equinoctial midday shadow (aksabha)’’.

This description of the yasti-yantra is similar to those of Brahmagupta and Lalla,
and the meaning is clear.

The modern Sirya-siddhanta (XI1.20)” also mentions the yasti, but it mentions
its name only without description of the instrument.
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d) Bhaskara II

Bhaskara II described the yasti-vantra in his Siddhanta-§iromani (Gola, X1.28-
38(i)).» Bhaskara II says to draw a level circle with the marks of four cardinal points
and the sun’s rising and setting points, and also a circle with the radius of the sun’s
diurnal circle which is graduated with gharis. Then the arc between the rising (or
setting) point of the sun and the tip of the yasti directed towards the sun is converted
to ghatis with the help of the diurnal circle drawn inside the level circle. Then he says
to obtain the Sanku (R.sin of the sun’s altitude) and the drg-jya (R.sine of the sun’s
zenith distance) by the yasti. Then he says to calculate the equinoctial midday shadow.
One method is to multiply the distance between the Sanku and the rising-setting line
by 12, and divide by the Sariku. An alternative method is to use two Sankus determined
in a day. The distance between the foots of these Sankus is multiplied by 12, and
divided by the difference of these Sarnikus. This is the equinoctial midday shadow
(palabha). Thesse methods are similar to the methods of Brahmagupta.

S

N

Fig. 23. OA, OB, OC : Yastis

Additionally, Bhaskara II explained the method to calculate the equinoctial midday
shadow, the sun’s declination etc. from three observations with the yasti, when the
sun’s rising-setting line is not known. (X1.33(ii)-38(i)). (See Fig.23). Bhaskara II says
to find three §ankus (i.e. vertical lines dropped from the tip of the yasti) thrice a day,
and draw a line (AC in Fig. 23) from the top of the first one (A) to the top of the
last one (C).Then he says to draw lines (BE’and BW’) from the top of the second one
(B) to the eastern and western horizon in such a way that they touch the previous line
AC. The two points thus found (E” and W) are joined, and then this line E'W’ is the
rising-setting line. What he has done is to obtain the cross-cut of the plane of the
diurnal circle and the plane of horizon. The distance between the rising-setting line
and the centre of the level circle is the R.sine of the sun’s amplitude. Bhaskara II then
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tells to obtain the equinoctial midday shadow as before. It can be calculated because
the rising-setting line is already known. Then, Bhaskara II says that the R.sine of the
sun’s amplitude multiplied by 12 and divided by the aksa-karna (hypotenuse of the
equinoctial midday shadow of 12-angula gnomon) is the R.sine of the sun’s declination.
And also, he says that the R.sine of the sun’s declination multiplied by the Radius and
divided by the R.sine of the obliquity of the ecliptic gives the R.sine of the sun’s
longitude, and it can be converted into the sun’s longitude. Evidently, these rules are
correct, and can be proved by Hindu spherics.

iii) The nalaka-yantra

The nalaka-yantra is practically the same as the yasti-yantra, but the nalaka-yantra
(“tube instrument”) must be a tube, while the yasti-yantra may be a simple stick.

The nalak-yantra is mentioned in the Triprasnadhaya of some works, such as the
Sisyadhi-vrddhida-tantra (IV. 47-48) of Lalla.” The nalaka-yantra described there is
a tube fixed to the direction of a heavenly body so that the observer can see the object
through the tube, and the position of the object can be confirmed. The reflection of
the heavenly body by the surface of water is also observed by the nalaka-yantra. As
the expression “nalakacchidrena” (by the hole of the nalaka) occurs in the text, it is
clear that it is a hollow tube.

Similar description is found in the Siddhanta-Sekhara (IV.84-85) of Sripati,? and
the Siddhanta-siromani (Grahaganita, 1I1.105-108) of Bhaskara II¥ also.

A somewhat similar instrument is the triangle-instrument, which actually is simply
called yantra or instrument in the text, mentioned in the Vate§vara-siddhanta (111.1.26)
of Vate§vara. It is an instrument to observe the pole-star. When its hypotenuse is
directed towards the pole-star, the base is equal to the length of gnomon, and the
upright is equal to equinoctial midday shadow.

iv) The §alaka-yantra

Lalla described the $aldka-yantra (“needle instrumnet”),which is used for the
determination of the angular distance, in his Sisyadhi-vrddhida-rantra (XX1.38-41).0

Lalla says to make a needle of as many angulas as there are in the radius (i.e.
360/2rn = 57), and stretch it from the east to west (BA in Fig.24). Then, at its western
end (A), one should lay off another horizontal needle (AC) perpendicularly to the
former. Then, observing a rising heavenly body (S) from the tip of the second needle
(C) in such a way that the heavenly body clings to the tip of the first needle (B), one
should determine the length of the second needle (AC) which indicates the R.sine of
the amplitude (agra). Lalla further says to observe the angular distance between two
planets by this instrument. He rightly wrote that the square root of the sum of the
squares of the two needles, that is the hypotenuse, is the Radius.
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Fig. 24. Saliki-yantra (reconstructed)
v) The §akata-yantra

The Sakata-yantra (“cart instrument”) is the V-shaped staffs. It was mentioned by
Varahamihira and Brahmagupta as a variation of the yasti-yantra without particular
name. The name of the fakata-yantra was used by Lalia and §ﬁpati.

Vardhamihira described the V-shaped staffs in his Pafica-siddhantika (XIV.12-
13) as follows.P
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“By the observation with the [V-shaped] staffs whose length is equal to the radius of
the level circle (chedya), the degrees between the sun and moon [should be obtained,
and their] twelfth part [should be taken]. It is known as the true elapsed tithis. After
this, next tithi is also to be counted.

Add [the longitude of] the sun, which is known by [the graphical calculation on]
the level circle, to those degrees [of elongation]. The result is [the longitude of] the
moon at that time obtained by [the graphical calcultion on] the level circle.”’

As we have seen in the section of the graduated level circle, the longitude of the
sun can graphically be calculated on the graduated level circle as explained in the
Parica-siddhantika (XIV.10 (ii)-11). And now, the longitude of the moon is obtained
by the observation by the V-shaped staffs and the graphical calculation on the graduated
level circle.

Brahmagupta also described a similar instrument in his Brahma-sphuta-siddhanta
(XXI1.24-26) as follows.?
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“A circle whose radius is equal to the length of the yasti and which has graduation
of degrees should be drawn on the ground, and the ends of two yastis are joined to
each other at their foot.

The sun and moon should be observed by them with the help of a string which
touches the tops [of the two yastis]. The degrees of the angular distance which is

known by the chord or string should be divided by 12. This is the tithis elapsed.

Alternatively, one may multiply a half of the string by the Radius and divide by

by the graduated level circle of desired radius.”’

the length of the yasti, convert it to degrees (by a sine table), and double it. This is
the angular distance between the sun and moon which can also be obtained {graphically]

Meaning of this text is clear. (See Fig. 25) The angular distance can directly be
measured by this V-shaped staffs and the graduated level circle.

vooE
|

Fig. 25. V-shaped staffs
Lalla described a similar instrument under the name of $akata-yantra in his

Sigyadhi-v_rddhida-tantra (XX1.42-43 and 51-52).9 It is practically the same as the V-
shaped staffs of Varahamihira and Brahmagupta.

Sripati also described the $akata-yantra in his Siddhanta-sekhara (XIX. 26) as follows.?
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“After making two sticks whose shape is like a cart (Sakata) (i.e.V-shaped figure) on
a circle graduated with degrees of a circle (360", the sun and moon should be
observed by them, and their (§akata’s) fallen figure’s (lit: plumb line’s) intersection
[with the level circle should be found]. The degrees of their distance represented on
the circumference [of the level circle] is divided by 12. It is elapsed tithis in the case
of the white half of a month, and it is remaining tithis in the case of the black half
of a month exactly”.

It is seen that this Sripati’s description is basicalaly the same as those of
Varahamihira, Brahmagupta, and Lalla.

vi) Terrestrial surveying by the yasti-yantra

The yasti-vantra can be used for terrestrial surveying also. Its method has been
described in the Brahma-sphuta-siddhanta (XXI1.32-38)" of Brahmagupta in detail.
Let us see the text one by one. The verse (XXII.32) reads as follows.

HUGFRRIAATHION ATV Hh Y |
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“The distance [between the two needles] is multiplied by the height of the other needle
(anva-salaka), and divided by the difference between the heights of two needles. This
is the bhn (“ground™). The bhn is multiplied by the height of the own needle (sva-
§alaka), and divided by the length of the yasti. This is the height of a house etc.”

This is a method to determine the height of a terrestrial object by the yasti-yantra
with a vertical needle. (See Fig. 26.)

A »
C F

B D E G H
Fig. 26.

In the figure, the segments DE and GH are the yastis of a fixed length. If CD
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is chosen as the “own needle”, then FG is the “other needle”. In this case, the segment
BE is the bhii. The object (house ect.) is AB. The rule stated in the text can be
expressed as follows.

DG x FG
" CD-FG’

BE x CD
- DE

AB

The second equation can easily be understood from the figure. The first equation can
be proved as follows. We have :

BE x CD BH x FG

AB

- ’

DE GH

BH = BE + EH = BE + DG, and
DE = GH.
From these relations, we have :
BE x CD = (BE + DG) x FG.
From this equation, the first equation of the text can be derived.

In the above discussion, we selected CD as the “own needle”. If FG is chosen
as the “own needle”, then CD is the “other needle”, and the calculation can be done
similarly.

Now, the next verse (XXII1.33) reads as follows.
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“The distance [between the ends of the two drstis] is multiplied by the [own] drsti and
divided by the difference [between the two drstis]). This is the bhiumi. The bhumi is
divided by the own drsti, and multiplied by the height of the needle (falaka). This is
the height [of the object ].”

This is an alternative method to determine the height of a terrestrial object. (See
Fig.27.) In this case, the height of the needles CD and FG are the same. The segments
DE and GH are called drstis. If DE is chosen as the “own drsti”, the segment BE is
the bhiumi. The object is AB. The rule in the text can be expressed as follows.
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Fig. 27.
DE x EH
" GH-DE’
BE x CD
B=— .
DE

This method is the same as the calculation-of the shadows of two gnomons
mentioned in the Aryabhatiya (I1.16), and some other mathematical works, such as the
Lilavafi (239). In mathematical works, this type of calculation is explained in the
section of Sarnkucchaya (gnomon-shadow).

Now, the verse (XXII.34(i)) reads as follows.

TRMAURTRS TR Hh ARG |

“The distance between the bottoms of two vertical segments [dropped from the two
ends of the yasti] is divided by the difference between the height of two vertical
segments, and multiplied by the larger segment (adhika). [This is the bhi].”

This method is to determine the distance of the object by observing its root. (See
Fig.28.) In the figure, GD is the yasti, where G is the eyepiece. The point C is the
root of the object, and the distance CH is the bau. Two vertical segments GH and DF
are dropped from the two ends of the yasti. Then the rule stated in the text can be
expressed as follows.

Fig. 28.
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FH x GH
H= ———— .
Gl

Brahmagupta continues to explain the method to determine the height of the object
using the bhii, obtained as above, as follows (XXII.34(ii)-35).
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“The bhu is multiplied by the difference between the height of the two vertical
segments, and divided by the distance between the bottoms of two vertical segments.
The result is subtracted from the length of the vertical segment from the eye-piece if
the vertical segment from the object-piece is shorter than the vertical segment from
the eye-piece, and added if longer. This is the height of the house obtained by the
observation through the bottom and top [of the yasti].”

This is the method to obtain the height of the object when its distance is known.
(See Fig.29) In the figure, GD is the yasti where G is the eye-piece and D is the
object-piece. Two vertical segments GH and DF are dropped from these points. The
distance CH is the bhiz, and AC is the object. So, the rule stated in the text can be
expresed as follows.

Br--~— ——-——__..5._______ CT

A ! !

CH x DE
AB = ,
FH
AC = GH * AB.

The rationale of this method is clear.
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Brahmagupta explains an alternative method to determine the distance and height
of an object as follows (XXII. 36).

gfegrermron fwiforar sueremear 4f: |
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“The drsti is multiplied by the vertical segment from the eye-piece, and divided by
the lower needle (adhah-$alaka). This is the bhiimi. The bhiimi is multiplied by the
full needle (sakala-$alaka), and divided by the drsti. This is the height Tof the object}.”

This text can be explained as follows. (See Fig. 30.) In the figure, KL is the drsri,
where L is the eye-piece, KM the “lower needle”, and PM the “full needle”. The drsti
is kept horizontally, and the needle vertically. The distance CN is the bhiumi, and AC
is the object. So, the rule in the text can be expressed as follows.

A

C
Fig. 30.
KL x LN
CN = ,
KM
CN x PM
AC = .
KL

The rationale of this method is clear.

Now, Brahmagupta explained the method to determine the height of an object
when the height of its one part is known as follows (XXII1.37).

facn Teaew faqaewarda TE Adq |
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“After knowing the height of one part of a house and observing by the desired needle,
the full height of the house [is determined as follows]. The known part {of the object]



234 YUKIO OHASHI

is divided by the first needle, and multiplied by the second needle. This is the height
[of the object]”.

This text can be explained as follows. (See Fig.31) In the figure, AC is the object,
where the height of the part BC is known. The segment FG is the drsti, EF the “first
needle”, and DF the “second needle”. Then the rule stated in the text can be expressed
as follows.

A

Fig. 31.

BC x DF
- EF

AC

The rationale of this method is clear.

Brahmagupta concludes the description of the yasti-yantra as follows (XXII.38).

T gASddl ASaTaE e |
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“The length of the needle (Salaka) is divided by the length of the yasti, and multiplied
by the Radius. Thus obtained arc (dhanus) is the [angular-] distance of the house.
Those who told like this are fools, because the obtained distance is not the drg-jya
(R.sine corresponding to the object ?).”

The meaning of this verse is not quite clear. (See Fig.32.) In the figure, AB is
the object (house etc.) and E the eye. Let FE be the Radius. Probably, the “angular
distance of the house” is the angle BEA. If we assume that the yasti is CE, and the
needle is CD, the amount (RxCD/CE) becomes the segment FG, which is exactly the
R.sine corresponding to the “angular distance of the house”. Then, there is no reason
to criticize this theory. It may be that the criticized theory is to assume that DE is the
yasti, and CD the needle. Then the amount (RXCD/DE) is different from the desired
R.sine. Probably, this mistake was criticized by Brahamagupta.
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Fig. 32.

vii) The dhi-yantra of Bhaskara II

Bhaskara II described the dhi-yantra (“intelligence in<trument”) in his Siddhanta-
Siromani (Gola, XI.40-49)." This is simply a staff which is supposed to be in rectangular
coordinates.

Bhaskara II explains to obtain the equinoctial midday shadow by the observation
of the pole-star with this instrument, and also to determine the distance and height of
terrestrial object by this instrument. The rationale of these calculations is the same as
the case of simple staff which we already have discussed.

Bhaskara II praised the dhi-yantra in his Siddhanta-Siromani (Gola, X1. 40-41)
as follows.?
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“But what is the use of numerous instruments described in several works for an
intelligent man? By the observation through the bottom and top of the yasti in his

hand, there is nothing unknown if it be visible, wherever in the heaven or on the
ground. [The object] situated in the water or on the ground is explained [as below].

After observing the root and top of a bamboo, he who finds out its distance and
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height by means of the yasti in his hand is the knower of the dhi-yantra. Tell me what
is not found out by him!”

As Bhaskara II says, the staff gives enough informations for Hindu astronomy,
if one spares no pains to do complicated calculations. However, it does not mean that
other convenient instruments are unnecessary. It seems that Bhiskara Il over-praised
the dhi-yvantra.

6. THe CIRCLE-INSTRUMENT AND ITS VARIANTS
1) Introduction

Some instruments can be classified as the variants of the circle-instrument (cakra-
vantra). Its basic variants are the semi-circle instrument (dhanur-yantra) and the
quadrant (turya-golaka-yantra). A circle kept in the plane of the equator is the bhagana
of Lalla or the nadi-valaya of Bhaskara II. The kartari (“scissors”) of Brahmagupta
is a combination of two semi-circles, one of which is in the plane of the equator, and
the other is in the plane of the meridian. Lalla and Sripati described a simplified
version of the kartari, which consists of a semi-circle in the plane of the equator and
a perpendicular gnomon. The kapala (“bowl”) described by Varahamihira and
Brahmagupta is the hemispherical sundial. Lalla and Sripati described a simplified
version of the kapala, which consists of a horizozntal semi-circle and a vertical
gnomon. The pitha (“seat”) is a horizontal circle with a vertical gnomon. Similar
instrument is the earthern platform desribed in the Triprasnadhyaya of some works.

11) The cakra-yantra

A fragment of Aryabhata-siddhanta of Aryabhata, quoted in Ramakrsna Aradhya’s
commentary on the Sirya-siddhanta, has a description of the cakra-yantra as follows.!
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“The cakra-yantra (“an instrument resembling a circular hoop”) bears (on its
circumference) 360 marks of degrees and has (two) holes at the equinoctial points.
Pointing the arc of the cakra-yantra towards the Sun, like the (arc of the) dhanuryantra,
the shadow of the gnomon as also the nadis elapsed in the day should be ascertained
as in the case of the yasti-yantra.” (Translated by K.S. Shukla)?

After the quotation of the Aryabhata-siddhdnta, Ramakrsna Aradhya made a
comment on the cakra-yantra in his commentary on the Surya-sidhanta. It may be
quoted here, although its manuscript is defective.?
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“The cakra-yantra, which is well-rounded, marked with degrees on its circumference,
and has a couple of holes below the equinoctial points, has been told [by Aryabhata].
Its ...(gap) .. facing towards {the sun], it should be rotated just like the dhanur-vantra
(it should be rotated around the vertical axis in such a way that it faces towards the
sun). Otherwise, just like the yasti-vantra, a string hung from a hole should touch the
ground. Gnomon’s root ...(gap)... centre and circumference ...(gap)... desired shadow.
Otherwise, the angulals correponding to the degrees between the hole facing towards
the sun and the sun’s amplitude (i.e. the sun’s rising point) divided by six is ghatikas
elapsed [since susnrise]. On the circumference of the southern half of the diurnal circle
which was obtained previously (in connection with the chava-yantra), ghatikas to
elapse [until sunset] during the remaining half-day should be known. Thus the knowledge
of ghatikas by the cakra-vantra.”

Tamma Yajvan also mentioned the cakra-yantra of Aryabhata in his commentary
on the Surva-siddhanta as follows.®
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“The Cakra-vantra (i.e. the Circle) is a circle (or hoop) whose radius is as many digits
in length as there are degrees in a radian, and whose circumference bears 360 marks
of degrees as well as two holes one at each equinotical point.” (Translated by K.S.
Shukla)®

From the above quotations, it is seen that Aryabhata's cakra-yantra is a circular
hoop which has two holes at diagonal points. (See Fig. 33.) It is held vertically,and
rotated around the vertical axis in such a way that the hoop faces towards the sun.
After that, the hoop must be rotated around its own axis in such a way that the sun-
light passes through the two holes. Then the time can be determined by the angular
distance between the sun’s rising point and the direction of the hoop (see Fig. 33(a),
and the description of Aryabhata’s dhanus below). Otherwise, strings hung from the
two holes to the ground are used to obtain the R.sine of the sun’s altitude and of the
sun’s zenith distance just like yasti-yantra (see Fig. 33(b)). In this case, the diameter
between the two holes is considered to be yasti.

Varahamihira described the cakra-yantra in his Paiica-siddhantika (XIV. 21-22)
as follows.®
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Fig. 33. Aryabhata’s cakra (reconstructed)
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“The cakra, which is half an angula wide and a hasta in diameter and is marked with
degrees evenly, [is made]. It has a hole in the middle of its width.When the ray of
the midday sunlight, coming perpendicularly, enter through the fine hole in the
circumference, the degrees at the base between [the point illuminated and] the string
hung from the centre is the midday zenith distance.””

Varahamihira’'s cakra is similar to Aryabhaga’s cakra, but it has only one hole,
while Aryabhata’s cakra has two holes. And also, Varahamihira’s cakra has a string
hung from the centre, while the strings of Aryabhata’s cakra are hung from the holes
on the circumference. It is clear that the sun’s zenith distance can easily be determined
by Varahamihira’s cakra. (See Fig. 34)

Brahmagupta described the cakra-yantra briefly in his Brahma-sphutasiddhanta
(XXII1.18) as follows.®
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Fig. 34. Varahamihira’s cakra (reconstructed)
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“The cakra-yantra is graduated with degrees and zodiacal signs (lit.: that which ends
with pisces) on its circumference. A plumb is hung from its centre. When one observes
through the cakra, the result is the same as the dhanus (semi-circle)”.

Here, it is seen that Brahmagupta’s cakra had a plumb hung from the centre just
like the cakra of Varzhamihira. Brahmagupta did not mention the hole, and it is not
clear whether it had a hole on its circumference or not.

Lalla and Sripati described another type of cakra, which consists of a circular
board and a perpendicular needle at its centre. The Sisyadhi-vrddhida-tantra (XXI.20-
21) of Lalla reads as follows.”
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“Construct a circular board, graduate it with the 360 divisions (of degrees) as well as
the 60 divisions (of ghatis), fix a vertical needle at its centre and set it up in such a
way that the Sun may lie centrally in its plane.

Then the signs etc. left behind (since sunrise) by the shadow of the vertical needle
denote the signs etc. by which the Sun has ascended (above the horizon). The nadis
left behind denote the nadis elapsed since sunrise, provided the Sun is in the eastern
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hemisphere. When the Sun is in the western hemisphere, the nadis thus obtained
should be subtracted from half the duration of the day (to get the nadis to elapse
before sunset).”” (Translated by K.S. Shukla)!®

The original word of the “vertical needle” is “avalamba” or “lamba”. It may
appear at first sight that this “lamba” may mean a “plumb”, but it is not so. The text
requests to determine the sun’s altitude, and it must be measured by the shadow of
the central ‘vertical needle”. (See Fig. 35.)

"

1
'
!

 Altifude

Fig. 35. Lalla, Sripati and Bhiskara II's cakra (reconstructed)

This point will become more clear in the description of the dhanur-yantra of Lalla,
which we shall see later.

According to K.S. Shukla,'V Lalla must have used the following formula in order
to deduce the nadrs elapsed since sunrise from the sun’s altitude.

semi-duration of day X Sun’s altitude

nadis elapsed = — -
Sun’s meridian altitude.

Sripati also described the cakra-yantra, which is similar to that of Lalla, in his
Siddhanta-sekhara (1X.12-13 (a-c)) as follows.!?
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“After making a well-rounded board which is marked with 60 [ghaiis] and degrees,
a perpendicular rod is inserted through a hole at its centre from its tip. Then one
should hold [the board] in such a way that the sun-light falls centrally [in its plane.].
The degrees left behind by [the shadow of ] the perpendicular rod according to the
position of the sun are those which the sun has ascended [above the horizon]. These
indicate elapsed ghatikas. This is called cakra.”

It is seen that Sripati’s cakra-yantra is similar to that of Lalla, and consists of
a circular board and a central perpendicular rod. (See Fig.35) The time obtained by
this instrument is rough approximation.

Bhaskara IT also described the cakra-vantra in his Siddhanta-siromani (Gola, X1.
10-15). Its shape is as follows. (XI. 10-11(i))."¥
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“The cakra is graduated with 360° on its circumference, and suspended by a loose
chain etc. The horizon (dhatri) is considered to be at the distance of 90° from the
suspended point, and the point at the distance of 180° is the zenith.

Putting a thin stick (suksma-aksa) to its centre, one should hold it [vertically] in
such a way that its circumference faces the sun.”

It is seen that Bhaskara II's cakra is practically the same as that of Lalla and
Srfpati. (See Fig. 35.) Bhaskara II tells to obtain the sun’s altitude and zenith distance
by this instrument. He also gives the following formula of “some former astronomers”
to obtain time.

. (semi-duration of day) X (sun’s altitude)
fime =

(sun’s meridian altitude)
Bhaskara II rightly ponted out that this is rough approximation.

Bhaskra IT further tells to keep the circle in the plane of the ecliptic at night in
such a way that fixed stars which have zero latitude appear to touch the circumference
of the circle. Then the longitude of a planet is obtained by the observation of the
angular distance between the planet and a fixed star whose longitude is known.

When the cakra is used in the last case, the cakra is kept in the plane of the
ecliptic. Otherwise, the cakra is kept vertically in all cases, and the sun’s altitude and
zenith distance are obtained.
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We can summarize the cakra-yantra of several authors as follows. The cakra of
Aryabha;a has two holes, and that of Varahamihira has a hole on its circumference, and
is held in such a way that the sun-light enters centrally through the hole. The cakra of
Lalla, Sﬁpati, and Bhiaskara II has a central rod whose shadow indicates the sun’s
altitude and zenith distance. The circle of Varahamihira and Brahmagupta has a plumb
hung from the centre. The cakra of Bhaskara II is hung by a chain which indicates the
direction of zenith and nadir, and probably that of Lalla and Sripati is similar.

iii) The dhanur-yantra

A fragment of the Aryabhata-siddhanta of Aryabhata, quoted by Ramakrsna
Aradhya in his commentary on the Siurya-siddhanta, has a description of the dhanur-
yantra (semi-circle instrument) as follows.?
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“The chord of the dhanuryantra is equal to the diameter of the circie (i.e.the perfect
circle), and its arrow is equal to the radius. (It is mounted on the circle vertically with
the two ends of its arc coinciding with the east and west points.)

The eastern end of the dhanuryantra should be moved along (the circumference
of) the circle until the dhanuryantra is towards the Sun. The shadow of the gnomon
will then fall along the chord of the dhanuryantra, and (the shadow-end being at the
centre of the circle) the distance of the gnomon as measured from the centre of the
circle, will always be equal to the shadow for the desired time.

The degrees intervening between the (eastern) end of the dhanuryantra and the
rising point of the sun divided by six give the ghafis elapsed in the day.”’ (Translated
by K.S. Shukla)®

Aryabhata’s dhanur-yantra is firstly held vertically in such a way that its two
ends coincide with the east and west points of the graduated level circle, and then
rotated along the level circle in such a way that the plane of the instrument coincides
with the direction of the sun. Thus, the sun’s azimuth is obtained. (See Fig. 36.) Then
a small stick on the arc of the dhanur-yantra is moved along the arc in such a way
that its shadow falls at the centre of the level circle. Thus the sun’s altitude is
obtained.Here, the “gnomon”is represented by a plumb line (CD in Fig. 36) dropped
from the small stick (c), and its distance (OD) from the centre is the “shadow for the
desired time”, that is the R.sine of the sun’s zenith distance. Aryabhata says that the
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azimuthal difference between the sun and its rising point divided by 6 gives the gharis
since sunrise. However, it is rough approximation.

Level circle -

oD isfa-bhx
Fig. 36. Aryabhata’s dhanus (reconstructed)

Tamma Yajvan also briefly explained the dhanur-yantra of Aryabhata in his
commentary on the Surya-siddhanta as follows?
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“The Dhanuryantra (i.e. the Semi-circle) is a semi-circle whose radius has as many
digits as there are degrees in a radian, and whose circumference is graduated with the

marks of degrees, and which is furnished with the chord and the arrow.” (Translated
by K.S. Shukla)®

The above is the descriptions of the dhanus of Aryabhata. Now, let us proceed to the
discussion of the dhanur-yantra of Brahmagupta.

Brahmagupta described the dhanur-yantra in detail in his Brahma-sphuta-siddhanta
(XXII. 8-16).” Let us see the text one by one. The verse (XXII. 8)reads as follows.
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“The dhanus should be held in such a way that the shadow of its one end coincides
with the other end. The degrees of the altitude, which are equal to the distance of the
plumb from the middle of the dhanus, give the ghatikas elapsed or remaining”.

In this case, the dhanur-yantra is kept vertically, and its chord is directed towards
the sun. (See Fig. 37.) Here, the sun’s altitude is represented by the arc between the
middle of the arc (B in Fig. 37) and the plumb (E) which is hung from the middie
of the chord (D).

V%‘)E

de
Fig. 37. Brahmagupta’s dhanus (st type) (reconstructed)

Brahmagupta explained another mounting of the dhanur-yantra as follows (XXII.
9).
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“Alternatively, it is held evenly in such a way that the shadow of the chord is cast
centrally. The desired ghatikas are obtained by the distance of the shadow of [the rod
at] the middle of the chord from the end [of the arc].”

In this case also, the dhanur-vantra is kept vertically, but its chord is kept
horizontally. (See Fig.38.) Here, the sun’s altitude is represented by the arc between
the end of the arc (C in Fig.38), which repressents the horizon, and the position of
the shadow (F) of a small rod (D) at the middle of the chord.
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Fig. 38. Brahmagupta's dhanus (2nd type) (reconstructed)

Brahmagupta continues to explain this mounting as follows (XXII.10)
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“The ghatikas are obtained , using the degrees of the sun’s altitude (sva-sanku-bhaga)
which have been marked severally [on the arc], from {the shadow of] the perpendicular
rod at the centre of the horizontal chord.

The dhanur-yvantra is a half of the cakra, and graduated with 180 degrees.”

Here also, the dhanur-vantra is kept vertically, and its chord is kept horizontally.
(See Fig. 38.) On its arc, marks corresponding to the sun’s altitude are marked from
the end of the arc. The time can be calculated from the sun’s altitude.

Now, Brahmagupta criticizes a theory of some former astronomer as follows
(XXII. 11).
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“Those who consider that the degrees of the sun’s midday altitude exactly indicates
the nadis of semi-duration of day are fools, because that shadow is not the same as
the desired shadow.”

Probably, Brahmagupta is criticizing the following formula in this verse.

(semi-duration of day) X (sun’s altitude)

nadis elapsed = - -
(sun’s midday altitude)
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Brahmagupta is right in saying that this formula is not exact.

Brahmagupta requests to calculate the time properly as follows (XXII. 12).
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“After finding the chord [corresponding to the sun’s ascension] along the diurnal
circle, one should mark the R.sine of the zenith distance, R.sine of the altitude, and
Radius, which are calculated by the proportion, from the end [of the arc]. This may
be applied to the turya-golaka (quadrant) and cakraka (circle instrument) also.”

This calculation is done according to the method explained in the Triprasnadhyédya,
as we have discussed in the section of the gnomon. After calculating the R.sine of the
zenith distance etc. corresponding to the time, the arc of the dhanur-yantra can be
graduated with time.

Brahmagupta continues as follows (XXII.13).
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“On the surface (prstha) which is marked with ghatikas, the R.sine of the zenith
distance and the R.sine of the altitude are also marked reversely (from the end of the
arc). A rod is at the middle of the chord. From the tip of its shadow, the zenith
distance and nadis [are known].”

This verse can easily be understood as a request to graduate the surface of the
dhanur-yantra which is mounted like Fig. 38.

Brahmagupta explains an alternative method of observation as follows (XXIIL.
14).
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“One should observe [a heavenly body] from the back of the dhanus looking through
the middle of the chord. The desired distance on the dhanus is the R.sine of the zenith
distance. From the R.sine of the altitude {and R.sine of the zenith distance thus
obtained], the shadow [of the gnomon can be calculated].”

This is a method to observe a heavenly body by putting one’s eye on the back
of the dhanus (F in Fig.38), and looking through the middle of the chord (D). Then
the segment DG is the R.sine of the zenith distance, and GF the R.sine of the altitude.
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The shadow of the 12-angula gnomon can be calculated as :

12 x (R.sine of zenith distance)
(R.sine of altitude)

shadow =

Brahmagupta continues as follows. (XXIIL 15).
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“[The segment of] the half-chord [obtained] from the eye-point is the R.sine of the
zenith distance. The degrees of the zenith distance and the R.sine of the altitude,
which is measured [from the eye-point] upto the ground (i.e. the chord of the instrument),
are also [known]. After settling them on the dhanus, the nadika etc. are obtained as
was explained.’

This is a continuation of the previous verse. The segment of the half-chord is the
segment DG, the eye-point is F, and the ground is AC in the Fig.38. The method of
calculation has been explained in the Triprasnadhyaya as we have seen in the section
of the gnomon.

Lastly, Brahmagupta explains the method to determine the height of a terrestrial
object by the dhanur-yantra as follows (XXII. 16).
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“Alternatively, the vertical line may be considered to be the needle (salaka), and the
half-chord the yasti. One should calculate the height of a terrestrial object by the
method explained in connection with the yasti”

In this case, the segment GF is considered to be the needle, and the half-chord
DC, or rather the segment DG, is considered to be the yasti. Then, the method
explained in the Brahma-sphuta-siddhanta (XXII. 32), which we already have discussed
under the section of the staff, can be applied, and the height of a terrestrial object can
be obtained.

The above is the description of the dhanur-yantra by Brahmagupta. It is seen that
the sine and cosine are graphically represented on this semi circle instrument.

Now, let us proceed to the desription of the dhanur-yantra by Lalla and Sripati.

Lalla described the dhanur-yantra in his Sisysdhi-vrddhida-tantra (XXI. 22-23) as
follows.®
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“The above is the so-called Cakra-yantra (‘The Circle’). Half of it is called
Dhanuryantra (‘The Semi-circle’). This latter instrument should be held (with its
chord horizontal) in such a way that a ray of the Sun passing through the hole in the
middle of the chord may fall on the arc.

Then the nadis left behind by the shadow of the central needle, as measured from
the arc-end, denote the nadis elapsed during the day (since sunrise), and the signs and
degrees left behind denote the signs and degrees by which the Sun has (ascended
above the horizon).”” (Translated by K.S.Shukla)”

This dhanur-yantra of Lalla has a central perpendicular needle (lamba) at the
middle of the chord, and probably it is fixed to the hole there. (See Fig. 39). There
is no doubt that the word “lamba” in the text means the central small perpendicular
needle, and not a plumb, because the arc between its shadow (F in Fig, 39) and end
of the arc (C) indicates the sun’s altitude.

F
Shadow

Fig. 39. Lalla and Srfpati’s dhanus (reconstructed)

Srfpati also described the dhanur-yantra in his Siddhanta-Sekhara (XIX. 13 (i)
as follows.®
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“...This is called cakra (circle instrument). A half of it is the capa (semi-circle) . It
has a perpendicular needle which is fixed to a hole at the middle of the chord.”

It is seen that this capa (= dhanur-yantra) of Sripati is similar to that of Lalla.

Bhaskara II mentioned the capa by its name only in his Siddhanta-siromani
(Gola, X1. 15).

iv) The turya-golaka-yantra

The turya-golaka-yantra (or turya-yantra) is the quadrant. Brahmagupta aescribed
this instrument in his Brahma-sphuta-siddhanta (XXI1.17) as follows.V

sHfpareacn gqu sf THles T4 |
wfewarareTeTE gIaRE 111711

“The turya-golaka-yantra is a half of the dhanus (semi-circle), and is marked with 90
degrees. Here, the amount of the ghatikas, the degrees of the altitude, and the distance
between [two] planets etc. are [measured] just like the dhr us.”

According to this description, the turya-golaka-yantra must have been a simple
quadrantal board, and the angular distance was measured just like the semi-circle
instrument.

Bhaskara II mentioned the turva-gola by its name only in his Siddhanta-§iromani
(Gola,X1.15).%

Bhaskara II did not describe the construction of the turya-gola, but probably it
was also a simple quadrantal board, and special description of its construction was not
necessary.

There is a more detailed description of the quadrant in the Vrddhavasistha-
siddhanta (III. 53-58), whose date is unfortunately unknown. The Vrddha-vasistha-
siddhanta (II1. 53-55) reads as follows.”
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“The instrument is a half of a semi-circle, which is smooth, made of metal or good
timber, and has two sides. There are two slits in order to observe a heavenly body.

There, the light enters from the centre towards the arc. There, 90 equal divisions
of the altitude should be marked. A plumb is hung by a string from the centre.

The sun is observed, and the R.sine of the altitude, which is known from the
plumb, is multiplied by the Radius 1000, and divided by the R. sine of the maximum
altitude (i.e. midday altitude), and its corresponding arc is multiplied by semi-duration
of day, and divided by 90. The result is nadis.”’

By this instrument, the R.sine of the altitude is obtained by the observation
through a couple of slits.(Sec Fig.40.) Then, the time is calculated by the well known
approximate formula, which we already have seen in connection with the cakra and
dhanus.

:5% 0,B--- Slits
AR L AoC = altitude

‘. CD= Rine of the altitude

N
N

Fig. 40. Vrddha-vasistha-siddhinta’s quadrant (reconstructed); O,B.....Slits, ZAOC = altitude, CD = R.sine
of the altitude

In later period, from about the 15th century, the quadrant develops into a more
complex instrument,which has 30 parallel lines which enable graphic calculation
immediately. This type of developd quadrant was described by Padmanabha (ca.AD
1400), Jhanardja (ca.AD 1503), Cakradhara etc.”

It may be that the quadrant described in the Vrddha-vasistha-siddhanta is a
forerunner of those later developed quardants.
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v) The bhagana or nadivalaya-yantra

The bhagana-yantra of Lalla and the nadivalaya-yantra of Bhaskara II are
practically the same, and consist of an equatorial circle and a central perpendicular
needle. So, this is a kind of the equatorial sundial.

Lalla described the bhagana-yantra in his Sisyadhi-vrddhida-tantra (XXI. 27-
29).Y The bhagana-yantra consists of a circular plate, where its rim is marked with
segments corresponding to the oblique ascensions of the zodiacal signs, and also with
degrees, and a perpendicular needle at its centre. The segments of signs should be
marked in reverse order, although Lalla does not explicitly say so. The board is kept
in the plane of the equator, with its needle pointing to the north pole, in such a way
that the shadow of the needle at sunrise points the sun’s position (sign and degree)
at the graduation of the rim. Then the shadow of the needle at desired time indicates
the rising sign (lagna) at the time, and the angular distance between the shadow at
desired time and at sunrise indicates the degrees corresponding to the time elapsed
since sunrise. (See Fig. 41.) In the figure, the angle AOB is the angle corresponding
to the time elapsed since susnrise. As the oblique ascension of a sign is the angle
corresponding to the time required to ascend for the sign e angle AOB indicates the
signs already have ascended since sunrise. Therefore, the position of the shadow (B)
indicates the sign on the horizon, i.e. lagna. (We should recall that the signs are
marked in reverse order.)

A (Mark)

B (Laﬂm)

Fig. 41. Bhagana-yantra or nadivalaya-yantra (reconstructed)

Bhiskara II described the nadivalaya-yantra, which is the same as the bhagana-
yantra of Lalla in principle, in his Siddhanta-Siromani (Gola XI. 5-7).? Bhaskara II's
nadivalaya-yantra is graduated with ghatikas also.
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vi) The kartari-yantra

Brahmagupta described the karttari-yantra (“scissors instrument”) in his Brahma-
sphuta-siddhanta (XX11. 43 (ii)-44) as follows."
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“The karttari-yantra, which is rough, was made by others, so I shall explain it. Two
boards, kept in proper directions, are joined at the base. At the centre where the lines
from the ends [of the board] join lies the gnomon (kila). From the tip of its shadow,
gross nadikas are obtained on the kartrari.”

Brahmagupta does not write the mounting of this instrument explicitly, but probably
it is a combination of a semi-circular board kept in the plane of the equator with its
chord in the direction of east-west line, and another semi-circular board kept in the
plane of the meridian with its chord in the direction of north and south poles. The
chord of the latter is then considered to be gnomon. (See Fig.42.) Here, Brahmagupta
says to obtain “gross nadikas”, but actually the exact time can be obtained by this
instrument, if the ascensional difference is added or substracted properly.

North

/‘ Po\e

—E

Fig. 42. Brahmagupta’s kartarl (reconstructed)

Lalla and Sripati described a simplified version of the kartari-yantra. Lalla wrote
in his Sisyadhi-vrddhida-tantra (XX1. 24) as follows.?
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“When (the Dhanur-yantra) is permanently fixed in the plane of the equator (forming
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the lower half of the equator) (and a needle pointing towards the north pole is fixed
at the middle of the chord), it is known as Kartari-yantra. In this case, the ghatis left
behind by the shadow of the needle fixed at the middle of the chord denote the ghatis
elapsed since sunrise.”(Translated by K.S. Shukla)®

This kartari-yantra is a kind of the equatorial sundial, just like the kartari-yantra
of Brahmagupta. However, the shape of Lalla’s kartari-yantra is not like the scissors
(kartari). (See Fig. 43.)

ff—

7

Fig. 43. Lalla and Sripati’s kartari (reconstructed)

Sﬁpati also described the karttart in his Siddhanta-sekhara (XI1X.14) as follows.®
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“When this (dhanur-yantra) , having a perpendicular needle at the middle of the
chord, is fixed in the east-west direction, it is called karrrari. The western arc left
behind by the shadow of the needle from the end of the arc indicates the nadis elapsed
in the day”.

From the above quotations, it is seen that the kartari-yantra of Lalla and Sripati
is the same, and consists of the semi-circular board in the plane of the equator and
a perpendicular needle at the middle of its chord. (See Fig. 43.) Its shape is not like
the scissors (kartari), but it can be said to be a simplified version of Brahmagupata’s
kartari-yantra, which is indeed like the scissors. Both types of the kartari-yantra give
the same result.

vii) The kapala-yantra

The name “kapala-yantra” (“bowl instrument”) has been used for three different
instruments as follows.

(1) The hemispherical clepsydra, described in the Aryabhata-siddhanta, and the modern
Surya-siddhanta. (We shall discuss this instrument later under the section of the
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clepsydra.)

(2) The hemispherical sundial, described in the Pafica-siddhantikd, and the Brahma-
sphuta-siddhanta.

(3) A simplified version of the 2nd case, which consists of a horizontal semi-circular
board and a vertical gnomon,described in the Sisyadhi-vrddhida-tantra, and the
Siddhanta-Sekhara.

Let us see the hemispherical sundial first. The Pafica-siddhantika (XIV.19-20) of
Vardhamihira reads as follows."”
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“One should make a concave kapala (“bowl”) whose radius is the same as the level
circle (chedya), having marks [of degrees and signs], [marks of solar] altitude at the
[observer’s] latitude (?), circles of directions, and a mark of its centre, and being fixed
on a well-levelled ground.

The degrees that have been passed by the shadow of the intersection of two
strings [passing through the cardical points at the rim] are to be added to [the longitude
of] the sun. The result is the rising sign (i.e. lagna). The nadis elapsed in the day are
also obtaned [by dividing the degrees by six].”’

David Pingree translated the expression “aksonnatam” as “tilt it by (the amount
of) the terrestrial latitude”.? but this translation is not acceptable in this context. In
order to obtain the time elapsed since sunrise and the longitude of the rising point of
the ecliptic (lagna) (neglecting the ascensional differeces), the rim of the hemispherical
sundial should be horizontal. (See Fig. 44.)

W

Fig. 44. Varahamihira and Brahmagupta’s kapala (reconstructed)
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Now, let us see the Brahma-sphuta-siddhanta (XXII. 42-43 (i)) of Brahmagupta,
which reads as follows.»
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“The kapalaka [is marked ] with zenith distance starting from the centre. Using the
intersection and ends of [two] strings passing through the cardinal points, the nadis
[are known] as the distance indicating the reverse altitude (on the concave hemisphere)
from the shadow of the intersection of the strings.

Otherwise, everything, nadis etc., [may be marked] just like the case of the
dhanus (semi-circle instrument).’’

It appears that this Brahmagupta’s kapalaka is also the hemispherical sundial
with horizontal rim, just like the kapala of Varahamihira. (See Fig. 44)

Now, let us see the simplified version of the kapala, described by Lalla and
Sripati.

Lalla wrote in his Sisyadhi-vrddhida-tantra (XX1. 25 (i)) as follows.®
s 4 Red g sued I |

“This very (Kartari-yantra), with its dial set horizontally on the ground and its needle
vertical, is called Kapala-yantra.” (Translated by K.S. Shukla)®

From this quotation, it appears that Lalla’s Kapala-yantra is a horizontal semi-
circular board with a vertical needle. (See Fig. 45.)

Fig. 45. Lalla and $ripati’s kapila (reconstructed)
Sripati wrote in his Siddhanta-Sekhara (XIX.15 (i)) as follows.®

Red wurad ke = =wHq |
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“When this (Karttari-yantra) is kept on the ground, with its needle directed upwards
and the semi-circle in the direction of the shadow, it is called kapala.”

This kapala of Sripati is evidently the same as the kapala of Lalla. (See Fig. 45.)
This instrument can be used to obtain azimuth only. So, the name kapala (“bowl”)
seems to be misnomer, and it seems that Lalla and Sripati simplified the kapdla too
much.

viii) The pitha-yantra

The pitha-yantra (“seat instrument’) is a horizontal circle instrument. Brahmagupta
wrote in his Brahma-sphuta-siddhanta (XX11.45) as follows.?

gelied qadie afcammtas afel |
fempddd=mrafeer fefyseaream 1451

“The pitha, which is flat, is kept at the eye-level, and its radius is approximately the
length of the yasti. Its circamference is marked with cardinal points and degrees. Its
surface is also marked with agra (sun’s amplitude) and ghatikas etc.”

This pitha-yantra is a horizontal circle kept at the eye-level. Brahmagupta did not
write whether it had a central needle or not.

Lalla described the pitha-yantra in his Sisyadhi-vrddhida-tantra (XX1. 25 (ii)) as
follows.?

U (UHh) WEHYAS ded de GRIGTRH 1251 |

“...and the Cakra-yantra, with its dial having the directions marked in its rim, and set
on the gound with its axis vertical, is called Pitha-yantra.” (Translated by K.S.Shukla)?

Lalla further writes (XXI.26) that the ghatis elapsed, which is denoted by the arc
left behind by the shadow of the needle, and the degrees of the sun’s amplitude (agra),
represented by the arc between the sun’s rising point and the east point,are obtained
by this instrument (See Fig. 46.)

Fig. 46. Pitha-yantra (reconstructed)

Sripati described the pitha-yantra in his Siddhanta-§ekhara (XIX. 15(ii)-17) as
follows.®
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“The cakra-yantra (circle instrument) [which is settled horizontally] with a vertical
needle and marks of cardianl points (and degrees) is the pitha (“seat”).

[The arc] left behind in the west [of the rim of the circle] by the shadow of the
needle standing at the centre is considered to be the ghatikas. The R. sine of the angle
[between the rising sun and the east cardinal point], obtained from the observation of
the disc of the sun at sunrise on the pitha, is exactly the R.sine of the sun’s amplitude
(agraka).

The nadis elapsed in the day which are obtained by the instrument should be
multiplied by the length of daytime and divided by 30. They are more correct nadis.
Otherwise, they are considered to be more rough’’.

This pitha-yantra of Sripati is the same as the pitha-yantra of Lalla, and is a
horizontal circular board with a central vertical needle. (See Fig. 46.) According to
the above text, the azimuthal difference betwen the east (or west) point and the sun
is observed, and its corresponding time is corrected as follows.

(observed time) X (length of daytime)
30

corrected time =

Even this correction is applied, correct time cannot be obtained from the sun’s azimuth.
ix) The earthen platform

The earthen platform (sthali) is used to observe the sun’s amplitude. One of the
earliest descriptions of the earthen platform is the Mahabhaskariya (111. 56-60(i)) of

Bhaskara 1.0

Bhaskara I says to erect a circular platform, as high as one’s neck, with its floor
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in the same level, and to graduate its circumference with the divisions of signs,
degrees etc., and cardinal points. Then, one should stand on its western side, and
observe the rising sun in such a way that it appears clinging to the circumference, and
the line of sight passes through the centre of the circular platform. The arc of the
circumference between the east cardinal point and the point where the sun is observed
is the arc of the sun’s amplitude. (See Fig. 47)

Fig. 47.
This earthen platform is practically the same as the pitha-yantra.
x) Consulsion

From the above discussions, it appears that Aryabhata’s cakra and dhanus are
different from later instruments in some respects. It may be that the time of Brahamgupta
was the period of transition, and he recorded some ancient type of the instruments.
For example, the kartari of Brahmagupta and the kapala of Vardhamihira and
Brahmagupta must be the original type of these instruments. At the time of Lalla,
some instruments such as kartari and kapala were simplified, and their shape was
changed. Sripati seems to have followed Lalla, and described almost the same
instruments. Bhaskara II also described similarly, but he only described some important
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instruments, and omitted the kartari, kapala etc. A very insteresting description of the
quardrant is found in the Vrddha-vasistha-siddhanta, which might be one of the
forerunners of the later developed quadrant. We have also noted in the previous
section that the horizontal gnomon has been described in this text, which is not found
in othr early Siddhantas. From the above discussions, we can see the evidence of the
development of astronomical instruments in Classical Siddhanta period.

The variations of the circle instrument can be classified into three groups, i.e. vertical,
equinoctial, and horizontal variations. The altitude (or zenith distance), the hour angle
(or its complementary angle), and the azimuth of a heavenly body can be obtained by
respective instruments. The time can be exactly determined by the equinoctial type,
if the sun’s ascensional difference is corrected. The time is roughly obtained from the
sun’s altitude or azimuth in the case of vertical or horizontal type.

7. THE CELESTIAL GLOBE AND THE ARMILLARY SPHERE
i) Introduction

Both the solid celestial globe and the armillary sphere which consists of hoops
are called gola-yantra.. The celestial globe was first described by Aryabhata in his
Aryabhatiya .This is uniformly rotated with the help of mercury, oil, and water.
Varihamihira also described the celestial globe. As regards the methods to rotate the
globe, we shall discuss in the section of the self-rotating globe.

The armillary sphere was described by Brahmagupta, Lalla, Sripati, and Bhaskara
I1. They wrote a special section or a chapter on the armillary sphere entitled Golabandha.
Lalla, Sripati, and Bhaskara II described the armillary sphere in the Yantradhyaya
also. And also the armillary sphere has been described in the modern Surya-siddhanta.

It may be mentioned here that the armillary sphere has been described in the
Soma-siddhanta (Goladhyaya)) and also in the Gola-dipika 1 (AD 1443)» of
Paramegvara.

ii) The celestial globe

Arybhata described a rotating model of the celestial globe in his Aryabhatiya
(IV.22) as follows.”
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“The Sphere (Gola-yantra) which is made of wood, perfectly spherical, uniformly
dense all round but light (in weight) should be made to rotate keeping pace with time
with the help of mercury, oil and water by the application of one’s own intelligence.”
(Translated by K.S. Shukla)®
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Aryabhata did not write how to rotate the globe, but later authors made several
devices to rotate the globe, some of which are possible to make, while some of which
are practically impossible to make. (See below, under the section of the self-rotating
globe)

A commentator Somegévara commented on the above verse that the globe should
be rotated by a string whose one end is attached to a nail on the globe and the other
side is attached to a gourd. The gourd is floating on water in a cylindrical container
which has a hole near its bottom. As water flows out from the hole, the gourd pulls
the string. Mercury is contained by the gourd in order to make its weight suitable.®
(See Fig. 48.)

Fig. 48. Rotating model of celestial globe (reconstructed)

Probably the above method is what Ar_yabha;a himseld was also thinking, because
the device of the water instruments in his Aryabhata-siddhdnta® is the same as above.
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Varahamihira also described the celestial globe in his Pafica-siddhantika (XIV.23-
25). His globe is not a self-rotating globe, but an instrument to represent time. The
Parica-siddhantika (XIV.23-25) reads as follows.»
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(Note:) * ...”dhatumayam” in another manuscript.
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“Make a perfectly round fine wooden (or metal, acording to another manuscript),
globe (gola), fand draw] two circles representing the equator (kala-rekha) and the
ecliptic (bhoga-rekha) which is marked with the sun’s position when it stops (i.e. two
solstices), on the surface.

By the observation of [the sun’s altitude] on the meridian, [obtain the sun’s
declination corresponding to the sun’s longitude, and] make the graduation as the
marks for the oblique observation [of the sunlight] with the figures of [the sun’s ]
declination [on the ecliptic} on the both sides of the junction of Pisces and Aries (i.e
the vernal equinox).

Raising the axis [of the globe] towards the north by the amount of the observer’s
latitude, [the degrees] between the horizon and the mark for the oblique observation
[directed towards the sun] divided by six correspond to the nadis elapsed [since
sunrise].”

It appears from the above description that this celestial globe is a model of the
celestial sphere in order to explain the relationship between the position of the sun and
the time, rather than an instrument for observation.

It should be noted that Aryabhata and Varahamihira described the celestial globe,
but did not describe the armillary sphere which consists of hoops and used for actual
observations.

iii) The armillary sphere in the Golabandha
Some Siddhidntas have a special section or a chapter on the armillary sphere

entitled Gola-bandha, namely the Brahmasphuta-siddhanta (XXI. 49-69), the Sisyadhi-
vrddhida-tantra (whole of chapter XV), the Siddhanta-Sekhara (XV1. 29-39), and the
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Siddhanta-Siromani (Gola, whole of chapter VI). Let us read the full text of the
Brahma-sphuta-siddhanta (XX1.49-69) first, as it is the earlest Golabandha, although
it is rather a presentation of sphrics than the description of an instrument. The description
of the actual armillary sphere is more clearly given in the Yantradhyaya of Lalla etc.,
which we shall see later.

a) Brahmagupta’s Golabandha

Let us see the texts of the Golabandha-adhikara of the Brahma-sphuta-siddhanta
(XXI. 49-69)" of Brahmagupta one by one,
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“49. [There is] the prime vertical (sama-mandala) in the east-west direction, and
another [circle called] meridian (yamya-uttara), and also another [circle called] horizon
(ksitija) which is like a girdle. At its centre is the earth (bhui-gola) on which the
observer stands.”
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“50. The six o’clock circle (un-mandala), which causes the increment and decrement
of daytime and nighttime, has two intersections with the horizon in the east and the
west, and is inclined to the horizon in the south and north by the degrees of latitude
of the observer (sva-aksa-amsa).”
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“51. The equator (visuva-mandala) is inclined to the prime vertical towards the south
at the top, and towards the north at the bottom, by the degrees of latitude of the
observer, and has two intersections with the horizon in the east and the west.”
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“52-53(i). The ecliptic (apa-mandala) has intersection with the equator at the first
points of Aries and Libra, and is inclined [to the ecliptic] towards the north at the first
point of Cancer and towards the south at the first point of Capricorn by 24 degrees.
The sun, the nodes (pdra) of the moon etc. (i.e. moon and five planets), and the earth’s
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shadow at the diagonal direction to the sun revolve here.”
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“53(i1)-54. The orbits (vi-mandala) [of the moon and five planets] are inclined to the
ecliptic from the nodes according to their own latitudes (sva-viksepa). The first half
of the orbit is the north [to the ecliptic], and the second half is the south. Along them,
the moon, Mars, Jupiter and Saturn, and also Mercury and Venus according to their
Sighra (epicyclic motion) revolve.”

(Notes:) In the case of the moon, Mars, Jupiter and Saturn, the vi-mandala can be
considered to be their deferents. In the case of Mercurry and Venus, their §ighra-uccas
(an imaginary point whose direction from the earth is the same as the direction of the
mean Mercury or Venus from the sun) revolve along their vi-mandalas.
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“55. A half of the drg-mandala, which is above [the horizon], revolves in such a way
that it faces the planet, and that the observer standing on the ground looks at the planet
situated on its circumference.”

(Note:) The drg-mandala is a great circle which passes through the zenith and the
planet.

fafyeraaosagRel s fen a9 |
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“56. The intersection of the horizon and ecliptic is the lagna (rising point of the
ecliptic). The [drk-ksepa-mandala’s] lagna (intersection with the horizon) [is shifted
from the north or south point] towards the same direction and by the same amplitude
as the [ecliptic’s] lagna. The drk-ksepa-mandala runs towards the south and north,
passing through the central ecliptic point (vitribha-vilagna).”

(Note:) The drk-ksepla-mandala is a great circle which passes through the pole of
ecliptic and the zenith. So, it intersects with the eclipctic at the mid-point of the
visible half of the ecliptic (i.e. vitribha-vilagana) at right angle.

ELCEEUECEIDINEEIRUN IR ST I
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“57-58. One should bind three {diurnal] circles beginning with Aries towrds the north
from the equator at the distance of their declination, [other three diurnal circles]
beginning with Cancer reversely (form the north towards the equator), others beginning
with Libra towards the south, and others beginning with Capricorn reversely. Their
own diurnal circles (sva-ahoratra) and their diameters [are represented here] severally.
Like this, [the diurnal circle of ] desired star [may be made] also.”
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“59-60. The [diurnal] circle of a star (bha-mandala) revolves towards the right west
at Lanka (on the terrestrial equator) at the velocity of 1 minute (of arc) per | prana
(4 seconds). One 12th of the ecliptic is a sign (rasi). The lagna (rising point of the
ecliptic) on the horizon ascends, beginning with Aries, but their ascensions are not
equal even at Lanka, because of the effect of their declination (i.e. effect of the
reduction to the equator). Further, [the oblique ascension is ] increased or decreased
according to he effect of the observer’s latitude.”
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“61. The arc of the [sun’s]diurnal circle intervened by the horizon and the six o’clock
circle corresponds to the [sun’s] ascensional difference (cara-dala). The R.sine of the
degrees between the east or west point and the diurnal circle on the horizon is the agra
(R.sine of the sun’s amplitude).”
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“62. The height, in the forenoon or afternoon, of the sun on the diurnal circle from
the horizontal plane is the anku (R sine of the altitude). The distance, in the forenoon
or afternoon, between [ the foot of] the §ariku and the centre of the ground is the drg-
Jjya (R.sine of the zenith distance).”

{(Note:) We have discussed these relations in the section of the staff.
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“63. On the drg-mandala (see vs.55), the R sine of the zenith distance (natamsa-jya)
is the drg-jya, and the R sine of the altitude (unnatamsa-jya) is the Sanku. Towards
the south from the sun’s rising-setting line is the fanku-tala of the day.”

(Note:) The Sanku-tala is the distance between the foot of the Sarku and the sun’s
rising-setting line, as we have discussed in the section of the staff.
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“64. The visible and unvisible spheres [of planets] are smaller and larger [respectively]
than a half of the sphere of planets (drg-gola) by the radius of the earth. As the
observer stands on the earth, the lambana (parallax in celestial longitude) and the
avanati (parallax is celestial latitude) [are produced].”
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“65. On the horizon, [the parallax is maximum which is equal to] the minutes (of arc)
corresponding to the radius of the earth on the orbit [of the planet]. The drg-nati is
from the zenith [towards the secondary to the ecliptic passing through the planet]. The
minutes (of arc) of the avanati is in the north-south direction (along the secondary to
the ecliptic). Others are the same as the case of solar eclipse.”

(Note:) The drg-nati (= drg-gati) is a quantity which is used for the calculation of
parallax, and i the arc dropped from the zenith perpendicularly to the secondary to
the ecliptic passing through the plannet. The theory of parallax is explained in the
section of solar eclipse of Siddhantas.
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“66. The [ayana-] valana is the declination, towards the north or south, of the point
on the ecliptic whose longitude is of the star increased by 90°. The [R.sine of the

ayana-] valana multiplied by the [R.sine of the star’s] latitude and divided by the
Radius is the [R.sine of the ayana-] drk-karman, which is negative or positive.

The other [aksa-} drk-karman [is obtained] just like the ascensional difference.”

(Note:) The ayana-valana is the angle between the secondaries to the equator and to
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the ecliptic at the star. It can be calculated as in the text approximately.

The ayana-drk-karman is the arc of the ecliptic interred by the secondaries to the
equator and to the ecliptic, both passing through the star. This is the difference
between the star’s celestial longitude and polar longitude.

The aksa-drk-karman is the arc of the ecliptic intervened by the horizon and the
hour circle passing through the star when it is rising. This is the polar logitudinal
difference between the lagna and the rising star.
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“67. The prime vertical, meridian, horizon, six o’clock circle, and equator, whose
radius is equal to the radius of the deferent (kaksd-mandala) of planet, are fixed for
each planet.”
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“68-69. There are 7 manda-epicycles (manda-ucca-nica-vrtta) and 5 §ighra-epicycles
(Stghra-ucca-nica-vrtta). There are eccentric circles (prati-mandala) also for each, the
sun etc.

There are drg-mandalas (see vs.55), drk-ksepa-mandalas(see vs.56), and apa-
mandalas (“ecliptic” for each radius) for the moon etc. There are 6 vi-mandalas
(orbits). [Thus,] the movable circles are 51 in number.”

(Note:) Fifty one movable circles are as follows.

number hevenly bodies concerned
manda-epicycle 7 SMP.
Sighra-epicycle 5 P.
manda-eccentric circle 7 SM,P
Sighra-eccentric circle 5 P.
drg-mandala 7 S,MP.
drk-ksepa-mandala 7 S.M,P.
apa-mandala 7 S,M,P.
vi-mandala 6 M,P.
total 51

(Abbreviations: S=sun, M=moon, P=planets.)
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It will be better to explain Hindu planetary theory just briefly. Two corrections
are applied to mean (madhya) planets in order to obtain true (sphuta) planets. One
correction is the manda-correction (manda-karman), which corresponds to our equation
of centre. The other correction is the Sighra-correction ($ighra-karman), which
corresponds to annual parallax in the case of outer planets, and planet’s own revolution
in the case of inner planets. Both corrections can be explained by epicycle model as
well as eccentric model. Firstly, the manda-correction is applied to mean planet,
which corresponds to the planet’s own mean revolution in the case of outer planets,
. and mean sun in the case of inner planets, and “manda-sphuta-planet” is obtained. So,
the “manda-sphuta-planet” is mean planet corrected by the equation of centre only.
Then, the §ighra-correction is applied to the “manda-sphuta-planet”, and the true
(sphuta) planet is obtained. (In the actual calculation, some special technique, such as
successive approximation, is used, but we shall not discuss about it here.)?

Now let us see the eccentric model, which can be used for both manda-correction
and Sighra-correction. (See Fig.49.). In the figure, E is the earth, U the “ucca”, P the
uncorrected planet, and P’ the corrected planet. The “ucca” is the apogee (manda-
ucca) in the case of manda-correction, the point corresonds to the mean sun in the case
of Sighra-correction for outer planets, and the point corresronds to the revolution of
mean planet (in helio centric model) in the case of §ighru-correction for inner planets.
In §ighra-correction, the ucca is called §ighra-ucca. The ucca revolves along the ucca-
nica-vrtta around the earth. The corrected planet P’ revolves along the eccentric circle
(prati-mandala) around the ucca, in such a way that its direction from the ucca is
parallel to the direction of the uncorrected planet P from the earth. The direction of
P’ from the earth is the directioin of the corrected planet.
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The same correction can be done by epicyclic model. (See Fig.50). Here also, E
is the earth, U the ucca, P the uncorrected planet, and P’ the corrected planet. The
uncorrected planet revolves along the deferent (kaksa-vreta) around the earth. The
corrected planet P’revolves along the epcycle (ucca-nica-vrtta) around the uncorrected
planet P, in such a way that its direction from the uncorrected planet P is parallel to
the direction of the ucca form the earth. (The ucca also revolves along the deferent.)
The direction of P’ from the earth is the direction of the corrected planet. Evidently,
this method gives the same result as the eccentric model.

?\\ C*f C\Q
-2

Fig. 50.

In the manda-correction, the angular distance between the mean planet and the
manda-sphuta-planet is called manda-phala. In the §ighra-correction, the angular
distance between the manda-sphuta-planet and the true planet is called Sighra-phala.

b) Lalla, Sripati, and Bhaskara II's Golabandha

Lalla devoted a whole chapter of his Sisyadhi-vrddhida-tantra (chapter XV) to
the armillary sphere as the Golabandha-adhikara® Lalla classified the circles of the
armillary sphere into three groups, i.e. the kha-gola, bha-gola, and graha-gola. The
kha-gola (sphere of sky) represents horizontal system of coordinates, and consists of
the prime vertical, meridian, two kona-circles (great circles passing throuth the zenith
and the south-east and north-west point, and south-west and north-east points), horizon,
and six o’clock circle. The bha-gola (sphere of stars) represents equatorial and ecliptic



ASTRONOMICAL INSTRUMENTS IN CLASSICAL SIDDHANTAS 269

coordinates, and consists of the equator, solstitial colure, equinoctial colure, ecliptic,
diurnal circles, and also the axis passing through the celestial poles with a central
model of the earth. The graha-gola is the sphere for each planet.

Sripati explained the armillary sphere in the Golabandha in his Siddhanta-Sekhara
(XVI.29-39). Sripati wrote to construct a model of the armillary sphere at the beginning
of the Golabandha (XV1.29(1)) as follows.
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“The knower of spherics may construct an armillary sphere (gola) with thin smooth
circles made of hard timber such as §riparni (Gmelina) etc., which are beautifully
joined to each other firmly.”

This is the erliest instruction of the practical method of the construction of the
actual model of the armillary sphere. Otherwise, Sripati’s description is similar to that
of Brahmagupta etc.

Bhaskara II devoted a whole chapter for the description of the armillary sphere
in his Siddhanta-siromani (Gola, chapter V1) °s Golabandha-adhikara.® Bhaskara 11
instructed to make the armillary sphere (gola) with circles made of bambo (varsa).
Besides the kha-gola and bha-gola, he added the drg-gola outside the kha-gola. It is
a mixture of the kha-gola and bha-gola, and it is put there only to exhibit inner circles.
The kha-gola and drg-gola are not movable, and the bha-gola can be rotated around
the axis. In the kha-gola, he added a fixed equator and a movable azimuth circle which
can be rotated around the vertical line.

iv) The armillary sphere in the Yantradhyaya

The armillary sphere has been described in the Yantradhyaya of some Siddhantas,
namely, the Sisyadhi-vrddhida-tantra (XX1.3-7) of Lalla, the modern Sirya-siddhanta
(XT1.3-15), the Siddhanta-sekhara (XIX.3-6) of Sripati, and the Siddhanta-Siromani (Gola,
X1.3-4) of Bhaskara II. Among them, the description in the Surya-siddhanta is relatively
detailed, but others are brief, because the subject has been treated in detail in the Golabandha.

Lallab wrote to construct the armillary sphere in order to determine the lagna and
time. It has the bha-gola and the kha-gola. At the time of the observation , one should first
fix a pin from the point of the equator which rises at sunrise towards the point of the ecliptic
which corresponds to the sun’s longitude. Then the bha-gola, which includes the equator
and ecliptic, is rotated in such a way that the shadow of the pin passes through the centre
of the sphere. Then the arc of the ecliptic intervened by the pin and the horizon indicates
the degrees which have risen since sunrise, and the arc of the eguator intervened by the
pin and the horizon indicates the time elapsed since sunrise. (See Fig. 51.)
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Fig. 51. Armillary sphere (reconstructed).

The Sirya-siddhanta® says to construct the armillary sphere with a wooden
terrestrial globe of desired size at the middle of its axis, which has the solstitial and
equinoctial colures as the supporting hoops, the equator, diumnal circles, and the
ecliptic. Here, the method of the observation has not been given. In the subsequent
verses, the self-rotating globe is mentioned, which we shall discuss later.

Sripati also, like Lalla, explained the method of the observation by the armillary
sphere in his Siddhanta-Sekhara (XIX.3-6). Let us see its full text as an example.
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“The ecliptic (kranti-vreta) should be graduated with 360 degrees. The horizon (urvi-
vrtta) and the meridian (yamya-vrtta) should also be graduated similarly. However, the
equator (nadi-vrtta) should be graduated with 60 divisions (i.e. nadis). The axis (yasti)
passing through the centre of the horizontal plane is attached to the north and south
(celestial poles).

Inside the kha-gola, which is fixed, the bha-gola is put properly. A stick (Salaka)
should be attached to the point of certain degrees on the ecliptic where the sun is
situated.

The stick is settled towards the equator from the rising point of the sun [on the
ecliptic] along the horizon. The equatorial ring(?) should be rotated in such a way that
the shadow of the stick falls on the centre [of the sphere].

The distance between the sun and the horizon is called samudgatamsa by
astronomers. The number of nadis between the stick and the horizon are certainly the
nadis elapsed since sunrise.”

From this description, it is clear that the time and the lagna can be determined
with the help of the equator-ring and ecliptic-ring respectively of the armillar sphere.

Bhaskara II¥ also wrote to determine the time with the help of the equatorial ring
of the armillary sphere.

v) Additional remarks

The first Greek celestial globe is ascribed to Eudoxus of Cnidus (409 BC-356
BC) by some, while George Sarton does not accept celestial globe earlier than the time
of Hipparchus (2nd century BC). It is supposed that Hipparchus used the armillary
sphere for his observation of stars.?

In the Almagest of Ptolemy (fl.ca.AD 150), both the celestial globe (VIII-3)” and
the armillary sphere (V-1)® have been described. Ptolemy also described simple ring
instruments, one is in the plane of the meridian with an alidade in order to know the
sun’s midday zenith distance in solstitial days, hence the obliquity of the ecliptic, (I-
12), and the other in the plane of the equator in order to know the day of equinox
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(I1I-1)®. In connection with the meridian ring, he described the mural quadrant also.

Ptolemy’s armillary sphere consists of a fixed meridian, movable ecliptic with
solstitial colure which can be rotated around the poles of the equator, and an outer and
an inner movable latitude circles which can be rotated around the poles of the ecliptic.
The inner latitude circle is made double, and the innet one has a pair of sight holes
and can be slided along the latitude circle.

H.T. Colebrooke® compared Hindu armillary sphere with Greek armillary sphere,
and pointed out that Hindus have not copied the armillary sphere of Ptolemy, because
the construction differs considerably. After examining the description in the Surya-
siddhanta and Siddhanta-siromani, Colebroke remarked as follows.

"This, though not a complete description of Bhaskara's armillary sphere, will
convey a sufficient notion of the instrument for the purpose of the present comparison;
and will justfy the remark, that its construction differs greatly from that of the instrument
specified by Ptolemy.

In the description of the armillary sphere cited from the Surya siddhanta, mention
is made of several stars not included in the asterisms which mark the divisions of the
ecliptic. ..." (H.T. Colebrooke)”

As Colebrooke has pointed out, Hindu armillary sphere is much different from
Ptolemy's armillary sphere. The most important difference is that the main purpose of
Hindu armillary sphere is to represent equatorial coordinates which rotates around the
celestial poles, while the main purpose of Ptolemy's armillary sphere is to represent
ecliptic coordinates.

In this respect, it is more interesting to compare with Chinese armillary sphere,
which is basically based on equatorial coordinates. In China,® the first armillary
sphere which is explicitly mentioned in historical records was made by Luo-xia Hong
(late 2nd century BC) who was one of the compilers of Taichu-calendar (104 BC)
which is the earliest Chinese calender whose mathematical principle is clearly known
to us. Unlike Ptolemy's armillary sphere, Chinese armillary sphere originally had
equatorial coordinates only. The ecliptic ring was officially added in AD 103, but the
ecliptic ring had been used by amatuer astronomers earlier. A celebrated astronomer
Zhang Heng (AD 78-139) made an armillary sphere and a water-driven celestial globe.
Both the rotating celestial globe and the armillary sphere were highly developed in
China afterwards. For example, an armillary sphere made by Li Chun-feng, the royal
astronomer of Tang dynasty, in AD 633 had three parts. Its outer part consisted of the
meridian, horizon, and equator, its intermediate part consisted of the equator, ecliptic,
lunar path, and solstitial colure, and the innermost part consisted of the latitude ring
and the alidade. And also, it is well known that Su Song described the water-driven
celestial globe and armillary sphere in great detail in his Xin-yi-xiang-fa-yao (the end
of the 11th century).”
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From the above discussions, it appears that Hindu armillary sphere is more close
to Chinese armillary spheres than Greek armillary sphere. Both Hindu and Chinese
armillary spheres are basically based on equatorial coordinates. It is not clear whether
there was any occasion to exchange the idea of the armillary sphere between China
and India. We shall discuss a related topic in the section of the self-rotating globe
later.

As we have seen above, the Hindu armillary sphere seems to have been used
since the time of Brahmagupta (7th century AD), although Brahmagupta did not
describe the method to construct the actual armillary sphere as an instrument clearly.
That the armillary sphere was actually used is also suggested by the fact that the polar-
longitude and the polar-latitude of the junction siars of naksatras are given in the
Brahma-sphuta-siddhanta (X.1-9), and also the celestial longitude and the celestial
latitude of the junction stars are given in the Maha-bhaskariya (I1l. 63-71(1)) and the
Laghu-bhaskariya (VIII. 1-9) of Bhaskara I (7th century AD). They may have been
obtained by the observation using the armillary sphere. On the contrary, Varahamihira
(6th century AD) gives the latitude of some of the junction stars in terms of hastas
("hands", a kind of linear measure) and not degrees in his Pafica-siddhantika (XII. 33-
38). It may be that Varahamihira did not use the armillary sphere, and obtained these
values by naked-eye observation by comparing the position of the star and moon. The
use of the earmillary sphere cannot be traced to the writings of Aryabhata and
Varahamihira.

8. THE CLEPSYDRA AND WATER INSTRUMENTS
1) Introduction
There are three types of the clepsydra, namely the outflow type, floating bowl

type, and inflow type. (See Fig. 52.) The clepsydra used in Vedanga period seems to
be the outflow type.” The inflow type was used in China, but is not found in India.
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Fig. 52. (a) Outflow type, (b) Floating bowl type, (c) Inflow type.
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The outflow type was used in Classical Siddhantas for water instruments etc. The
clepsydra proper in the Classical Siddhantas is usually the floating bowl type. Besides,
the seif-rotating globe was described by some authors, some of which are similar to
the water instruments, and some of which are devices of perpetual motion which are
actually impossible to make.

The floating bowl type of the clepsydra was probably the most popular astronomical
instrument in India until recently, and there are several historical records on the actual
use of the clepsydra.

ii) The clepsydra in Siddhantas

The Aryabhata-siddhanta of Aryabhata, quoted in Ramakrsna Ariadhya’s
commentary on the Surya-siddhanta, has the description of two variations of the
floating bowl type of the clepsydra, i.e. the ghatika-yantra and the kapala-yantra.

The description of the ghatikd-yantra by Aryabhata is as follows."
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“One should get a hemispherical bowl manufactured of copper, 10 palas in weight,
six angulas in height, and twelve angulas in diameter at the top. At the bottom
thereof, let a hole be made by a needle eight arigulas in length and one pala in weight.

This is the ghatika-(yantra), (so named) because it is filled up by water in a
period of 60 palas (i.e. one ghati).” (Translated by K.S. Shukla)?

The kapala-yantra of Aryabhata is as follows.®
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“Any other copper vessel made according to one’s liking, with a hole in the bottom,
which sinks into water 60 times in a day and night, is the water instrument called
kapala.” (Translated by K.S. Shukla)®

From the above quotations, it appears that the ghatika-yantra and the kapala-
yantra are basically the same, and only the size of the ghatika-yantra has been
specified.
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Varahamihira described the clepsydra in his Parica-siddhantika (XIV. 31-32) as
follows.»
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“One sixtieth of the water escapes from any hole [of the clepsydra] during a day and
night is a nadi, that is 180 breaths of a healthy man.

A copper vessel, whose shape is like a half of a pot, with a hole at its bottom
is to be made. It is put in clear water in a basin. When it is filled [with water], it is
a nadi. Observing [the clepsydra which depends] on the smallness of the hole at the
bottom, there counted 60 [nadrs] during a day and night. Or, [a nadi is measured] by
reciting 60 verses each of which consists of 60 long syllables.”

The expression “vinihsrta” (escaped from, gone out) in the first verse suggests
that the outflow type of the clepsydra is meant there. The copper vessel mentioned
in the second verse is evidently the floating bowl type of the clepsydra. Its size is not
specified there. As Thibaut and Dvivedin pointed out, the vs.32 itself consists of 60
long syllables.

Brahmagupta also described the copper ghatika-yantra in his Brahma-sphuta-
siddhanta (XXII. 41) as follows.®
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“The ghatika (clepsydra) is a copper cup, half a pot in shape, and has a small hole
at its bottom. It is made in such a way that it sinks into water 60 times in a day and
night.”

Here, Brahmagupta did not specify its size.

Lalla described the ghati-yantra in detail in his Sisyadhi-vrddhida-tantra (XXL
34-37) as follow.”
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*34-35. The Ghatika vessel, looking like one-half of a (spherical water-pot called)
Kalasa, made of ten palas of copper, half a hand in diameter at the top and half as
high, and having a hole bored (at the bottom) by a uniformly circular needle of 4
angulas in length, made of 3!/3 masas of gold, sinks into limpid water in one nadi
exactly.

36-37. Or, it is a vessel manufactured according to one’s liking (with the hole in
the bottom) later adjusted by the measure of a ghatl.

Or, it is a vessel having a finger-wide hole (in the bottom) and of size determined
by proportion in such a way that it may sink (in water) as many times in a day as there
are ghatis in that day.

A ghati is also equal to 360 asus, each asu (being equal to the time of pronunciation)
of 20 short syllables (or 10 long syllables).” (Translated by K.S. Shukla)®

Here, Lalla described three types of the clepsydra, one of which has been given
definite size. All of them are used to measure one ghati.

The Surya-siddhanta (X111.23)® mentions the copper clepsydra called kapalaka,
which has a small hole at its bottom, and is placed on water in order to measure one
ghati. Its size is not specified there.

ngpati described the ghati-yantra in his Siddhanta-Sekhara (X1X. 19-20) as
follows.1®
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“The ghati (clepsydra) is made of 10 palas of copper, 6 angulas in height, its double
(12 angulas) in width, and is a vessel shaped just like a half of a water-pot and filled
with water in 60 palas (i.e. one ghati).

The aforesaid vessel should be bored [a hole at its bottom] by a needle of 4
angulas in length, which is made of 3!/3 masas of gold, so as to be filled with water
in one nadika.”

Evidently, this Sripati’s clepsydra is the same as the first type of Lalla’s clepsydra.

Bhaskara IT described the copper gharika in his Siddhanta-Siromani (Gola, X1.8).'9
This is a copper vessel with a large hole at its botiom, and its size is not specified.
The text (XI. 8) reads as follows.!?
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“The ghatika (clepsydra) is made of copper, half of a water-pot in shape, and has a
large hole at its bottom. The duration of a day and night is divided by the number of
its sinking [into water] in a day and night, and this is the measure of the ghati
(clepsydra).”

Here, the duration of time measured by one sinking of the clepsydra is not
specified, and is determined by experiment for each clepsydra. So, it may be said that
this is a practical instruction for common use of the clepsydra.

iii) Indian clepsydra in historical accounts

The clepsydra was probably the most popular astronomical instrument in India
until recently, and there are several historical records of this instrument.

There is an inscription on the “Manikiala Stone” found at Manikiala in the Rawal
Pindi District.” It is written in Kharosthi script, in Prakrit language. F.E. Pargiter
conjectured that this inscription indicates that Lalana, the President of the people and
the scion of the Kusana race of Kaniska, established some kind of water-clock in the
market-place of the Satrap Vespasi.® This inscription appears to be very difficult to
read, and different people interpreted it in different way. So, it is difficult to say
whether Pargiter’s conjecture is correct or not.

There is an earthernware fragment of Guhasena of Valabhi. Its inscription reads :
Ko [200] 40 7 Sriguhasenah ghata....... 3 This date corresponds to AD 566/567. J.F.
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Fleet conjectured that this water-jar was used for measuring time.¥

S.R. Sarma® pointed out that the outflow type of the clepsydra is mentioned in
the Kadambari of Bana (7th century AD). The expression “anavarata-galan-nadika”
(continuously dropping nadika) is found in the Kadambari,® and this shows that the
nadika is the outflow type of the clepsydra.

A Chinese Buddhist traveller Yi-jing (AD 635-713)7 recorded that the clepsydra
had been widely used in India. In his Nanhai-jigui-neifa-zhuan (Record of Buddhism
sent home from the South Seas),® Yi-jing described the clepsydra in Nalanda temple
as follows.

“And also, all the temples in the western country (i.e. India) have the clepsydra,
which have been donated by successional kings. There a time-keeper appointed, who
announces time for people.

Below is a copper basin filled with water, and above is a copper bowl floating
on it. The bowl is thin and smooth, and two sheng (one sheng was about 0.59 liter)
in capacity. A hole has been bored in its bottom, from which water flows in. It is thin
like a needle. It is the standard for measuring time. When the bowl is filled with water,
it sinks, and a drum is beaten [by the time-keeper].”®

After this description, Yi-jing wrote that the clepsydra sank four times in one
watch (i.e. prahara), and the daytime as well as the nighttime was divided into four
watches. So, this clepsydra is for 1.875 ghatls in equinoctial days. The measurement
of the clepsydra was changed by adding or subtracting water in the clepsydra according
to the change of the length of daytime and nighttime.

Yi-jing added that in the temples of Mahabodhi and Kusinagara, the clepsydra
sank 16 times between sunrise and midday.

Al-Birini (AD 973-ca.1050) quoted from a book called Sridhava of Utpala the
Kashmirian in his /ndia as follows.

“If you bore in a piece of wood a cylindrical hole of twelve fingers’ diameter and
six fingers’ height, it contains three mana water. If you bore in the bottom of this hole
another hole as large as six plaited hairs of the hair of a young woman, not of an old
one nor of a child, the three mana of water will flow out through this hole in one
ghati.” (Translated by E.C. Sachau)'®

This is the outflow type of the clepsydra, and different from the floating type of
the clepsydra described in Classical Siddhantas.

The earliest Indo-Persian source which mentions the clepsydra is the Tarikh-i
Firuz Shahi of Shams Siraj ‘Afif (14th century AD).'"



ASTRONOMICAL INSTRUMENTS IN CLASSICAL SIDDHANTAS 279

Description of the clepsydra is also found in the Babur-nama of the first Mughal
Emperor Babur (reigned 1526-1530 AD),'? and the A ‘in-i Akbari of Abii’l-Fazl (1551-
1602 AD).1®

The clepsydra is found in some Mughal Miniatures also, as pointed out by S.R.
Sarma.'¥

There are several accounts and studies of Indian clepsydra by European people,
namely, John Gilchrist,'> Francis Buchanan,'® Hermann von Schlagintweit-
Sakiinliinski,'” J.F. Fleet,'® F.E. Pargiter,' and Hermann Jacobi.?®

iv) Water instruments

Water instruments are a kind of mechanical clock driven by water-flow. The
outflow type of the clepsydra is connected to a stature of a man or animal etc., which
indicates time by its movement etc.

Aryabhata wrote to construct water instruments in his Aryabhata-siddhanta, quoted
in Ramakrsna Aradhya’s commentary on the Sirya-siddhanta.V Aryabhata tells to
make a cylinder, which is actually the same as the outflow type of the clepsydra. The
height of the cylinder is divided into angulas which correspond to the water-flow in
each ghati. A gourd containing mercury is placed on water in it, and tied to the end
of a cord. Another end of the cord is connected to a model of a man or a figure of
a peacock or monkey, whose movement shows time as water flows out through the
hole at the bottom of the cylinder.

Varahamihira also mentioned water instruments in his Panca-siddhantika (XIV.
27-28) as follows.?
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“The seed (bijas) for all [water] instruments (yantras) are string, water, and sand. By
them, {water instruments with the models of] tortoise, man, or any desired form are
to be made on the board.

The teacher should give them only to a steadfast pupil. Receiving the seed, which
is unknown even to his son, the pupil should apply it to the instrument.”

Neugebauer and Pingree misunderstood the above verses, and translated the word
yantra as “magical diagram”. However, it cannot be supposable that the magical
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diagram, which is described in Tantra literature, is mentioned in purely astronomical
literature. The yantra in the above verses is evidently the water instrument, and the
figures of tortoise, man etc. are used to indicate time. As water instruments are
described by Aryabhata, it is clear that they were known at the time of Varahamihira.

Brahmagupta explained water instruments in his Brahma-sphuta-siddhanta (XXII.
46-52).% Let us see the text one by one.
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“A cylinder [is made], which has a hole at its bottom. Its height is divided by the
number of ghatikas during which water flows out. By the angulas obtained, the nadika
(= ghatika) is graduated. Thus the instrument is settled.”
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“A strip should be marked with beads for measuring gharis, which are attached at
intervals of angulas corresponding to ghatikas. A figure of a man is above, and the
cylinder is below. A horizontal rod is kept at the middle of the mouth [of the figure
of a man].”
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“A bottle-gourd containing mercury is attached to the strip which is coiled round the
rod. The [figure of] man throws out the bead on the flowing water. In the same
manner, the [figure of] tortoise etc. [may be made].”
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“The [figure of] man pours out water from his teat, mouth, or ear, which is connected
with the clepsydra filled with water, to the fixed mouth of another man directed
upwards.”
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“In the same manner, a [figure of] bride, which is connected with {a strip marked
with] angulas corresponding to nadikas, should be joined with a bridegroom in a
room. And also, [models of] fightings of various fighters, such as boxer, elephant,
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buffalo, and sheep, [may be made].”
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“The [figure of] peacock eats or throws out serpent by segments according to angulas
corresponding to ghatikas.

By the [stature of] students etc., who are above the beads on the strip, ..... (to be
continued)”
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..... a drum or bell is struck by a strick, and makes sound.

Thus thousands of instruments may be made with the help of this essential
requirement (bija, i.e. water, mercury, oil, strip etc.).”

The water instruments described by Brahmagupta as above are several devices of
the water-driven clock. Their constructions are easily under-stood from the text.

Lalla also described similar water instruments in his Sis)'adhi-vrddl1ida—tarzzra
(XXIL.12-17).9

The Surya-siddhanta (XIII. 21(i1)-22)> mentions water instruments, but the
method of their construction has not been explicitly given. The text says that it is
“difficult”.

gripati described water instruments in his Siddhanta-$ekhara (XIX. 9-11). Let us
see the text one by one.®
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“A strip, which is marked with arigulas corresponding to ghatikas, is set free, and
should be supported by the mouth [of a figure of man]. It is put inside the wooden
figure of man, and then it is coiled round the horizontal rod [in the figure].”
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“The strip goes downwards from the chest, and a bottle-gourd should be tied there
from above as before. It proceeds downwards in the vessel from the instrument with
ears (man’s figure?). Water flows out, and it indicates nadis.”
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“In this manner, by his own intelligence, an astronomer may construct fighting-sheep-
instrument or elephant-instrument, where it is connected with the action with ten marks
(marked string?) from the centre of the self-rotating machine to the bija (i.e. water?).”

There are some obscure words in the above text of Serati, but it is clear that his
water instruments are similar to those of Brahmagupta and Lalla.

v) The self-rotating globe and related topics

We already have seen that Aryabhata mentioned the self-rotating celestial globe
in his Aryabhatiya (IV. 22). He himself did not write how to rotate it but probably
it was rotated by water-flow just like other water instruments, as was suggested by a
commentator Some$vara.

Brahmagupta also described the self-rotating instrument in his Brahamsphuta-
siddhanta (XXII. 53-57(i)), but he explained a method to rotate it using mercury,
which is practically impossible to practice. Let us see the text one by one.?
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“A light wooden wheel, which has spokes of smooth hollow tube inside, [should be
made]. The spokes are filled with mercury by half, and are firmly connected to the
circumference.”
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“A horizontal axis at its centre is placed on two supporters. Its (tube’s) mercury
roundly moves in the tubes upwards and downwards. Therefore, the wheel rotates by
itself for ever.”
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“One should, by his own intelligence, pour mercury in the tube in such a way that it
rotates in the same speed as time (i.e. diurnal rotation of the celestial sphere) by
desired size, [keeping the wheel] either horizontally or vertically.”

The above is the description of a device of perpetual motion, which is practically
impossible to make. Evidently, the wheel does not rotate, even if mercury is poured
in a hollow spoke.

Brahamgupta continues to explain another practical method as follows (XXII. 56-
57(1).
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“A bottle-gourd is tied to the main string coiled round the rod, and is placed in a
cylinder as before. Nadika [is indicated as it] flows on water.

Similarly, by these devices, the quick movement of bow-string, throwing of
arrow, and sound of cloud {may be made].”

This is the same as the water instruments, and is, of course, possible to make.

Lalla and Sripati described the method to rotate the globe, which is quite practical,
more clearlv. Lalla says to rotate the armillary sphere by the water-flow in his
Sisyadhi-vrddhida-tantra (XX1. 8-11).2 However, Lalla also mentions a “wheel” with
spokes, which are half-filled with mercury, just like Brahmagupta’s instrument. Lalla
says that it rotates by itself (XXI. 18), and instructs to rotate a globe by the “wheel”
(XXI. 19).» This method is practically impossible.

The Strya-siddhanta (X1II. 16(ii)-19(i)),* also instructs to rotate a sphere-instrument
combined with quicksilver, but says that it is a “mystery”. The method of its construction
is not explained there.

Sripati is perhaps the most rational and practical in this topic. He described the
self-rotating globe in his Siddhanta-sekhara (XIX. 7-8) as follows.®

Arege PP T
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“A vessel which has a hole at the bottom and is filled with water should be marked
with divisions of nadika etc. according to water-flow. A bottle-gourd which is possessing
mercury and combined with the globe by a string should be thrown there (vessel)
which is filled with water.

As water flows gradually, the bottle-gourd moves downwards. Thus the globe
rotates automatically, and the distance between the position of the sun and the horizon
[on the globe] indicates nadis [elapsed since sunrise].”

The principle of this method is the same as the water instruments, and of course
it is possible to make this device. This is a kind of water-driven mechanical clock.

Bhaskara II, however, explained some devices of perpetual motion which are
practically impossible to make. He states that he describes them simply because they
have been mentioned by former astronomers. It may be noted that Bhaskara II criticized
the device of the self-rotating instrument rotated by water-flow as “vulgar” (gramya)
on account of its being dependent (sapeksatva). (Siddhanta-$iromani (Gola, XI. 50-
58).)%

In the section of the armillary sphere, we have discussed that the water-driven
celestial globe was made in China, by Zhang Heng (AD 78-139) etc., and there are
some detailed records of its construction, notably the Xin-yi-xiang-fa-yao (the end of
the 11th century) of Su Song. Joseph Needham suggested Chinese influence on Indian
self-rotating globe. After discussing the self-rotating instrument described in the
Siddhanta-Siromani and the Surya-siddhanta, Needham wrote as follows.

“At this date, then, India shows a development closely allied to that taking place
in China and Islam. Here the curious association between perpetual motion and armillary
spheres may possibly give an important clue. Perhaps some observer, seeing the
Chinese clocks imperfectly from the outside and marvelling at them innocently invented
that myth of perpetual motion which was to dog the science of mechanics for so long.
An invention of rationality produced the compromice of ‘perpetual motion’ wheels
powered by scoops fitted to the rim and receiving a stream of water to help things
along. Perhaps the perpetual motion fable first originated from an unprecise account
of a Chinese clock like Su Sung’s. At all events, from the middle of the twelfth
century onwards, there is considerable likelihood of the transmission of such Chinese
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ideas to India and Islam and thence (after 1200 and 1300) to Europe.” (Joseph
Needham et al.)?

This is an interesting suggestion, but Needham’s argument cannot be accepted as
it is, because Aryabhata already described the self-rotating celestial globe in his
Aryabhativa (AD 499), and it is before the time of “transmission” suggested by Needham.
It is not clear whether there was an occasion of Chinese influence in earlier age. The
self-rotating celestial globe was made in China already in the 2nd century AD, but we
do not have any historical evidence which shows actual Chinese influence on Indian
self-rotating globe. The origin of the Indian perpetual-motion theory is still not clear.

vi) The sand-clock

The currently popular editions of the modern Surya-siddhanta are usunally based
on Ranganatha’s version (AD 1603). In this version of the Surya-siddhanta, the sand-
clock has been mentioned. The Sirya-siddhanta (XII1. 21), according to Ranganatha’s
version, reads as follows.!
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E.Burgess and Whitney translated this text as follows.

“By water-instruments, the vessel (kapala), etc., by the peacock, man, monkey,
and by stringed sand-receptacles, one may determine time accurately.” (Translated by
Burgess and Whitney)”

The original expression for the “sand-receptacles™ is “renu-garbha”. The world
“renu” means dust, sand etc. As the commentator Raniganatha used the words “dhuli”
(dust, powder), and “mrd-ghatika” (soil-clock) in his commentary, there is no doubt
that the instrument described in this version is a kind of the sand-clock.

However, Ranganatha’s version (AD 1603) is rather late, and there are several
early versions of the Sirva-siddhanta. Parame§vara’s version (AD 1432), published by
K.S. Shukla, gives a different reading as follows (above text of Ranganatha’s version
corresponds to XIII. 21(ii)-22(i) of Parame$vara’s version).”
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Here, the word “renu” does not appear, but the expression “venu-garbha” (bamboo-
container) appears. So, this is not the sand-clock, but must have been the usual water
instrument. According to a footnote of K.S. Shukla’s edition, the versions of Ramakrsna
Aradhya (AD 1472) and of Yallaya (AD 1472) read “sa-sitra-venu-garbha-sthaih”
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etc.” Here also the word “venu” (bamboo).

I consulted some other manuscripts of early versions of the Sirya-siddhanta, and
confirmed that the following manuscripts have the expression “venu-garbha”, and not
“renu-garbha”. A manuscript of Cande§vara’s version (AS Calcutta G-10758), a
manuscript of Madanapala’s version (Lucknow 47051)®, a manuscript of Bhiidhara’s
version (Lucknow 45760),” and a manuscript of Tamma Yajvan’s version (Lucknow
46145)®. All of them are earlier than Ranganatha. (Candesvara : AD 1185, Madanapala :
late 14th century, Bhiidhara : AD 1572, and Tamma Yajvan : AD 1599.)

From the above facts, it is likely that the original reading of the Surya-siddhanta
was “venu”, and not “renu”. So, the sand-clock was not described there originally.

In later period, the sand-clock appears in the Yantra-prakasa (AD 1428) of
Ramacandra and in the Sundara-siddhanta (AD 1503) of Jfianaraja.® As Ranganatha
is later than both of them, it is not surprising if he was familiar with the sand-clock.

At present, we can say that we do not have evidence which shows the existence
of the sand-clock in Classical Siddhanta period.

9. THE PHALAKA-YANTRA

The phalaka-yantra (“board-instrument”) is Bhaskara II’s invention, and is an
instrument to determine time. Firstly, the sun’s altitude is observed by this instrument,
and then the time is calculated graphically. (Siddhanta-siromani (Gola, XI. 16-27).))

The phalaka-yantra is a rectangular board whose height is 90 angulas and breadth
is 180 angulas. Horizontal lines are drawn at every angula, and a hole is made at the
middle of the 30th line from the top in order to place a pin. A circle with the radius
of 30 angulas is drawn with the hole as centre. Its circumference is graduated with
ghatis and degrees. An index arm is suspended by the pin in such a way that it can
be rotated around the pin. (See Fig. 53.)
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Fig. 53. Phalaka-yantra (after Sastri and Wilkinson)
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The method to use this instrument is as follows. Firstly, the board is held in such
a way that s side faces the sun, keeping the side vertical. Then the index arm (OM
in Fig. 53) is fixed along the shadow of the central pin (0). So, the angle NOM is equal
to the sun’s altitude. Previously, the index arm has been marked with a point M, of
which distance (OM) from the pin is equal to the amount called yasti. (For the
definition of the yasti, see below.) Then, a vertical line (NM) passing through the
point M is drawn, and a point P above or below (according to the sun’s declinatin
which is north or south) at the distance (MP) equal to the R.sine of the sun’s ascensional
difference is marked. Here, the Radius is the radius of the circle on the board, i.e. 30
angulas. Then, a horizontal line (PT) from the point P is drawn, and its cross point
(T) with the circle indicates the time. In the figure, the arc CT indicates the time until
midday or since midday.

The rationale fo this method is as follows. Let a be the sun’s altitude,  the sun’s
declination, J the observer’s latitude, and T the sun's hour angle (i.e. angle
corresponding to the time until midday or since midday). (See Fig. 54.) In Fig. 54 (a),
which is the orthographic projection of the celestial sphere onto the plane of the
meridian, the segment OR is the R.sine of the sun’s altitude, where the point 0 is the
projection of the sun. The segment OR can be divided into the two segments OK and
KR. Form Fig. 54(b), which is the orthographic projection of the celestial sphere onto
the plane of the equator, we have

BO=CO'cos T=rcosT= % R.cos T.
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Fig. 54. (a) Orthographic projection onto the plane of the meridian, (b) O_Qhographic projection onto the
plane of the equator.
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r
Since X = cos 8, we have

BO = R.cos 6. cos T.
So, from Fig. 54(a), we have

OK =BO.cos & = Rcos &.cos d.cos T, o (1)
because the angle OBK is (90°-O).
Now, in Fig. 54(a),

BC = R.sin 8, and

BL = BC.sin &.

So, we have

KR =BL =Rsin @. sind. e (2)
From the equations (1) and (2), we have

R.sin a = Rsin . sin 8 + Rcos &. cos 8. cos T,  -—-- (3)
because R.sin a is equal to the sum of the segments OK and KR.

From the equation (3), we obtain the following equation.

R.sin a
RcosT =———— ZFRtan @. tan &
cos & . cos 6

R x Rsin a R.tan &. R.tan &
= + e @)
R.cos &. R.cos & R

where the value of § is taken as positive, and the last term is subtracted when 3 is
north, and added when 8 is south.

Nextly, let @ be the ascensional difference. In Fig. 54(a), the segment CG is equal
to the R.sine of the ascensional difference (R.sin ).

R
As CG = — AB, we can calculate the amount of the R.sine of the ascensional
r

difference as follows. Firstly, we have
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AB = BC.tan & = R.sin 6. tan &.

Therefore,

R 1
Rsin w = CG = — AB =
r cos

AB = Ritan 4. tan &.  ----- (5)

Now, we define the yasti as follows.

R
asti = —— ———— 6
ya cos . cos & ©®

Let y be the yasti. Then, from the equations (4), (5), and (6), we can calculate
the R.cosine of the sun’s hour angie as follows.

Recos T=ysina¥Rsinw.  ceeee (7

The graphical calculation on the phalaka-yantra exactly corresponds to this
equation. (See Fig. 53 again.) The segement OM is the yasti, MN is y.sin a, MP is
R.sin , and PN or TT’ is R.cos T. Therefore, the arc TB corresponds to the
complementary angle of T, and the arc TC corresponds to T.

The method to calculate the yasti is as follows. Let k be the equinoctial midday
hypotenuse (aksa-karna) of 12-angula gnomon at the observer’s latitude. Then

12.R
Rcos & = ——.
k
Therefore,
) R
D t -
yai cos . cos d
Rk 1
=—X
12 cos &
R.k (cos 6 + vers &
12 cos 0
R k 12 R.vers &
= — k+—x=——"") (8)
12 12 R.cos &
12 R.vers &
Bhaskara 11 gives the value of ———  as 4/60, 15/60, 32/60, 50/60, 63/60,
.COS

and 68/60, for the bhuja (longitudinal distance from the equinoctial points upto 90°)
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of the sun 15°, 30°, 45°, 60°, 75°, and 90°. (Actually, Bhaskara II gives the differences
of the above values in the text.) Using these values, the yasti is calculated by the
equation (8), putting R = 30 for this instrument.

From the above discussion, it is clear that the phalaka-yantra is a ingenious
instrument to determine time, and the time can be determined exactly.

10. METHODS OF OBSERVATION

i) Introduction

Astronomical observations can be divided into two kinds. One type of astronomical
observations is an application of astronomy for civil life, such as the determination
of directions, time, etc. Another type of astronomical observations is for the
determination and improvement of astronomical constants.

We already have seen the first type of observations which can be summarized as
follows.

(1) The cardinal directions can be determined by the Gnomon (Sanku) with a level
circle. The Staff (yasti) can also be used for the similar observation, according to
Brahmagupta.

(2) The time can be ditermined by the Clepsydra (ghati-yantra), and several water
instruments. The time can also be determined by the observation of the sun's hour
angle (or its complementary angle), which is obtained by the hemispherical Kapala
(of Varahamihira and Brahmagupta), the Kartari-yantra, the Bhagana or Nadivalaya-
yantra, and the Gola-yantra (armillary sphere). In the case of this observation, the
sun's ascensional difference should be corrected in order to know the time since
sunrise. The lagna (rising point of the ecliptic) can also be determined by the
hemispherical Kapala, the Bhagana or Nadivalaya, and Gola. The time can be calculated
from the Rsin of the sun's altitude determined by the Gnomon. The time can be
graphically calculated from the sun's altitude by the Phalaka-yantra of Bhaskara II.
The time can roughly be determined from the sun's altitude determined by the Circle
(cakra), the Semi-circle (dhanus), and the Quardrant (tzuriya), or from the sun's azimuth
determined by the Pitha, and the flat Kapala (of Lalla and Sripati).

(3) The angular distance can be determined by the Salaka, and the Sakata. The agra
(the sun's amplitude) can be measured by the Salaka, and also by the Pitha, and the
earthern platform.

(4) The distance, height etc. of terrestial objects can be measured by the Staff or the
Dhi-yantra of Bhaskara II which is actually the staff which is supposed to be in the
rectangular coordinates.
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Now let us see the observations for the determination and improvement of
astronomical constants. Bhaskara II explained this type of observations in his auto-
commentary Vasanabhasya (hereafter V-SS) on his Siddhanta-siromani, Graha-ganita
(’I.ii.1-6)”, and in his commentary Vivarana (hereafter V-SDV) on Lalla's
Sisyadhivrddhida-tanira (1. 1-8)® and (V.2)*. And also, Some$vara explained this type
of observation in his commentary on the Aryabhatiya (IV.48)%.

ii) The sun's revolution

Firstly, let us see Bhaskara II's method of the determination of the sun's revolution
(V-S$, Lii.1-6). The revolution number in a kalpa is called bhagana. In the case of
the sun, Venus, and Mercury, the bhagana is 4320000000. In the case of Venus and
Mercury, the bhagana is measured by their mean motion, which is apparently the
same as the sun's mean motion. Bhaskara II tells to determine the length of one
revolution of the sun, that is the length of one year, by a circular platform. He writes
as follows (V-SS, Lii.1-6).
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"Now, on a flat ground, a circle should be drawn by a pair of compasses of desired
measure, which is marked with the measurements of the Radius, and the circle should
be graduated with directions and degrees. During urtarayana, {when the sunrise is
seen] towards a point which is south from the eastern cardinal point but not so far,
the sunrise should be observed with a pin at the centre of the circle. Then, the number
of sunrise should be counted for one year. It is equal to 365. At this sunrise, the point
of the sunrise is a little south from the previous (i.e. the last year's) point. The distance
of these two points should be measured. Then, on the next day, the sunrise should be
observed again. It is a little north from the previous (the last year's) mark. The
distance of these two points should also be measured. Then the ration-proportion. If
the sum of these two differences is 60 ghatikas, what is the amount of the southern
difference?”

The length of a year obtained by this method is evidently a tropical year, because
it is based on the movement of the sun, and different from sidereal year which is
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necessary for Hindu astronomy. It is quite strange that Bhaskara I does not mention
this difference, and immediately gives the length of a year as 365 days, 15 ghatikas,
30 palas, 22Y2 vipalas, which is apparently the length of a sidereal year.

Bhiaskara II wrote in his V-SDV (I.1-8) to observe the rising time of the star
Advint and of the sun. Next day, the star will rise about 10 palas (= 4 minutes) earlier.
He tells to determine the difference between the sun's rising and the star A§vinT's rising
during the sun's revolution, and obtain the sun's mean daily motion. By this method,
the length of a sidereal year can be obtained.

Somegvara wrote to observe the sunrise by a circular platform, and count the
number of sunrise from the sun's entrance to the first point of Aries to the sun's next
entrance to the first point of Aries. Some§vara followed Aryabhata's original text in
the Aryabhatiya (IV.48)Y which reads as follows.
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"The Sun has been determined from the conjunction of the Earth and the Sun, the
Moon from the conjunction of the Sun and the Moon, and all the other planets from
the conjunction of the planets and the Moon.” (Translated by K.S. Shukla)?

Let the number of the conjunction (i.e. the number of civil days) be C, and the
number of the rotation of the earth during the same period be E. Then the number of
the sun's revolution is E minus C. So, if the rotation of the earth is known, the number
of the sun's rotation (i.e. the number of sidereal years) can be calculated.

iti) The moon's revolution

Bhaskara II explained in his V-SS (1.ii.1-6) that the revolution of the moon should
be determined by the observation with an armillary sphere (Gola-yantra). He writes
as follows (V-S§, Lii.1-6).
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"Thus, this Gola-yantra, which has an axis rightly pointed to the celestial poles and
has a horizontal circle which is adjusted to the water level, should be firmly fixed.
At night, the star Revatl should be looked by seeing through the centre of the sphere,
and the end point of Pisces on the ecliptic circle should be adjusted in such a way
that it touches the star Revati. Then the moon should be looked by seeing through
the centre, and the ‘observational circle’ (a circle which is perpendicular to the equator,
and can be rotated around the celestial poles) should be adjusted in such a way that
it touches the moon. After doing like this, the distance between the cross point of these
two circles and the end point of Pisces is known as the true moon at this time. The
distance between the ecliptic and the centre of the moon's disc along the ‘observational
circle' is the polar latitude (viksepa). Then on the next day, at the same ghatikas
elapsed at night, the observation should be made again. Like this, after knowing the
true moon on the next day, the difference between them is obtained as the true motion
on this day. Then, these true values should be converted into the mean position by the
rule started as ‘Sphutagraham madhyakhagam prakalpya’ etc., and the difference
between them is obtained as the mean motion of the moon. From this, the ration-
proportion. What is the lunar motion during the number of civil days [in a kalpa]} when
the lunar daily motion is such? Thus, the moon's bhagana is obtained.”

The rule quoted above is from the Siddhanta-$iromani, Grahaganita (11.45)",
whose text and an English rendering by Arkasomayaji are as follows.
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"Assume the true planet to be the mean; compute the manda and §ighra-phalas and
applying them inversely, we have an approximation of the mean planets. Treating
these as the mean planets, again obtaining the manda and §ighra-phalas and again
applying them inversely and repeating the process till constant values are obtained, we
have by this method of successive approximation the mean planets required.” (Translated
by D. Arkasomayaji)”

Bhiaskara II wrote in his V-SDV (1.1-8) to count the number of conjunctions of
the sun and moon during the sun's revolution, and calculate the moon's mean motion.
The number of the conjunction plus the number of the sun's revolution (one, in the
above case) is the number of the moon's revolution. This method had already been
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suggested by Aryabhata.

Somes$vara also wrote to determine the moon's mean motion from the number of
the conjunction of the sun and moon. Some§vara wrote that the moon's mean motion
can also be determined by counting the number of moonrise during a year. The
number of sidereal days in a year minus the number of moonrise in a year is the
number of the moon's revolution in a year.

iv) The moon's apogee

Bhiskara II tells in his V-S$ (Lii.1-6) to observe the true motion of the moon
every day, with the armillary sphere just like the observation for the moon's revolution,
and find out the day when the true motion is smallest. On this day, the position of
the moon is its apogee (ucca), and the true moon and the mean moon coincides. After
a revolution of the moon, the day when the true motion is smallest should be determined
again. After knowing the difference of these two points, i.e. the motion of the apogee
during an anomalistic month, and the length of an anomalistic month, the bhagana of
the lunar apogee is obtained by ratio-proportion.

Bhaskara II wrote in his V-SDV (I.1-8) to determine the moon's true motion by
using the Yasti-yantra in successive day at just the same time. The moon's true motion
can be determined by the angular distance of the tip of the V-shaped two Yastis fixed
in successive two days. '

Some$vara wrote to determine the time from sunset to moonrise during krsna-
paksa (waning fortnight), by the Ghafti-yantra, and calculate the moon's true position
from it, and obtain the moon's true motion by successive observations.

v) The moon's node

Bhaskara II tells in his V-S$ (Lii.1-6) to observe the moon every day, just like
the observation for the moon's apogee, when its southern polar latitude is decreasing,
and find out the day when the polar latitude is zero. Then, one should mark the
position of the moon on the ecliptic circle of the armillary sphere. It is the position
of the node (pata). After a revolution, the position of the node should be determined
again. It is west of the previous position, that is the motion of the lunar node is
restrograde. After knowing these points, i.e. the motion of the node during a nodical
month, and the length of a nodical month, the bhagana of the lunar node is obtained
by ratio-proportion.

Bhiskara II wrote in his V-SDV (I.1.8) that one should firstly determine the
position of the moon by the Yasti-yantra when the moon's polar latitude is zero near
the star A§vini, and again observe the naksatra where the moon comes to its node next
time. Then the movement of the lunar node is known.
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Somesvara wrote a different method to determine the lunar node as follows.
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"At the time of lunar eclipse, the ghatikas of the half duration of the lunar eclipse,
from the time of commencement to the middle of the eclipse, [should be determined,
and] it should be multiplied by the difference of the true daily motion of the sun and
moon, and divided by 60. It is the minutes corresponding to the half duration [of the
eclipse]. Its square should be subtracted from the square of the half of samparka (the
sum of the apparent diameter of the eclipsed and eclipsing bodies, i.e. the moon and
the earth's shadow), then the square root of the result is the polar latitude (viksepa)
of the moon. It should be multiplied by the Radius (3438") and divided by 270, and
the corresponding arc of bhuja (the moon's angular distance from the node, upto 90°)
should be obtained by using a table (sine-table)."

This method is clear, because the polar latitude is zero at the centre of the earth's
shadow, and the moon's polar latitude at the middle of the eclipse, which is equal to
the angular distance of the moon and the centre of the earth's shadow, can be calculated
applying Pythagorean theorem.

The moon's maximum polar latitude is assumed to be 270", i.e. 4°30'. The Rsin
of the moon's bhuja is proportional to the Rsin of the moon's polar latitude, and it is
roughly considered to be proportional to the moon's polar latitude itself, because Rsin
6 = 0 when 0 is small.

Somesvara further tells to determine the half duration from the middle of the
eclipse to the end of the eclipse. If the first half is larger, the moon is in the odd
quadrant, otherwise it is in the even quadrant. So, if the polar latitude is north and
the moon is in the odd quadrant, the bhuja itself is the polar longitude, and if the moon
is in the odd quadrant, the bhuja should be subtracted from 180°. If the polar latitude
is south and the moon is in the even quadrant, the bhuja should be added to 180°, and
if the moon is in the even quadrant, the bhuja should be subtracted from 360°.
Somesvara tells to obtain the moon's longitudinal distance from the ascending node
by this method. He further tells to make observation similarly at the next lunar eclipse,
and determine the movement of the moon's node.

~ Some$vara wrote an alternative method that the moon's declination can be
calculated by the shadow of the gnomon at the moon's transit, hence the moon's polar
latitude can be calculated.
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vi) The sun's apogee

The sun's apogee can be found out by the observation of the sun's smallest true
motion. Bhaskara II wrote in his V-SS (Lii.1-6) as follows.
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"On the day when the sun is in Gemini, the ghatikas between the rising of the star
Revatl and the sunrise, that is the lagna from the end point of Pisces, should be
determined. The lagna is the true position of the sun. On the next day, again [the
observation should be made], and the distance between these positions of the true sun
is the true motion. Like this, the true motion should be known every day. On the day
when the motion is smallest, the sun is at the apogee (ucca or tunga). The movement
of the apogee cannot be observed even after a hundred years. However, its motion has
been conjectured, just like the lunar apogee, by the savants. This is also like that. As
after aharganas (number of days since the epoque ) or years, the apogee is at such
and such position, the bhagana in a kalpa should be determined skilfully, or by
kuttaka (a kind of indefinite equation) method.”

Somes$vara wrote to calculate the sun's true position from the sun's midday shadow,
and determine the difference from the mean sun. From successive observations, the
position of the sun's apogee can be determined.

vii) The outer planets’ epicyclic motion

As regards the epicyclic motion of the outer planets, Bhaskara II tells in his V-
SS (Lii.1-6) that the planets are drawn by the Sighra-ucca and departs from the mean
motion. The bhagana of the Sighra-ucca is the same as that of the sun. He wrote as
follows.

TESIA FoTgl I7 AARY add a1 TS FTBTTE
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"If the sun proceeds in front of Saturn, Jupiter, and Mars, then the true planet is seen
in front of the mean planet. When the sun is at the back [of the planets], the true planet
is seen behind the mean planet. Thus, it is inferred by intelligent men that the Sighra-
ucca of those three (Saturn, Jupiter, and Mars) is the same as the sun.

Therefore it is proved that the bhagana of the sun is equal to the bhagana of the
sighra-ucca."

viii) The planets' apogees

This is the method to find out the planet's apogee (manda-ucca). In this method,
it is assumed that the §ighra-ucca is already known.

Bhaskara II wrote in his V-SS (Lii.1-6) to obtain the manda-sphuta from the
observed true planet. The manda-sphuta is the position of the mean planet corrected
by manda-correction (equation of the centre) only, without the §ighra-correction. He
says to obtain the manda-sphuta by deducting the §ighra-phala from the observed true
planet by successive approximation. It should be obtained every day, and the day
when the manda-phala is zero should be found out. On *'.[> day, the position of the
planet is the apogee (manda-ucca) or perigee (mandc nica). Its bhagana is obtained
just like the case of the sun's apogee.

1x) The inner planets' epicyclic motion

This is the method to find out the inner planet's §ighra-ucca. In this method, it
is assumed that the manda-ucca is already known.

Bhaskara 1I tells to observe the angular distance between the sun and Venus by
the circle instrument (cakra-yantra) when they are seen in the east. Then, the position
of true Venus should be calculated from this angular distance and the position of the
true sun. Arter that, the manda-phala is deducted from the true Venus. (Let this point
be A.) And also, the mean sun should be obtained. (Let this point be B. This point
is the same as the mean Venus.) From these values, the Sighra-phala is obtained as
the angular distance between the points A and B. When the Sighra-phala is maximum,
the Sighra-ucca is assumed to be pulling perpendicularly to the direction of true
Venus. So, the §ighra-ucca is at the distance of 90° from true Venus. The position of
the §ighra-ucca should again be determined at the next greatest elongation at the same
side, and the bhagana of the §ighra-ucca is calculated from these angular distance and
the time span.

The §ighra-ucca of Mercury is also determined similarly.
x) The planets' nodes

Bhaskara II further wrote to determine the nodes (patas) of the planets by the
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observation of the polar latitude just like the node of the moon.

In the case of outer planets, the node is the point where the manda-sphuta
coincides with the ecliptic.

In the case of inner planets, the node is the point where the §ighra-ucca coincides
with the ecliptic.

xi) The apparent diameter of the sun and moon

Bhiskara II wrote in his V-S$ (V.6) to observe the apparent diameters of the sun
and moon by the V-shaped staffs. He wrote as follows.

i 7 sHwg wwgRe s T | afeme e
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"On the day when the mean motion and the true motion of the sun are the same, the
edges of the disc at sunrise should be observed by the two tips of the double staff of
which two roots are combined (i.e. V-shaped staffs), and whose length is equal to the
number of minutes in a radian.”

When the mean motion and the true motion of the sun are the same, the sun is
at the mean distance, So, the result is the mean apparent diameter of the sun. Bhaskara
II gives the values 32°31733”". He also tells to observe the full moon, when the true
motion is equal to the mean motion, and gives the value 32°0”9".

Bhaskara II mentioned another method in his V-SDV (V.2). He wrote to determine
the time during which the disc of the moon rises from the horizon. From the time thus
obtained and the moon's mean motion, the apparent diameter of the moon can be
calculated by proportion.

xii) Conclusion

From the above discussions, it is seen that the methods of observations explained
by Bhaskara II is theoretically correct, although some of the observations, such as the
determination of the sun's apparent diameter by the V-shaped staffs, appear to be very
difficult to practice. As we have discussed in the Introduction of the present chapter,
the possibility of the actual observation in Classical Siddhanta period has been suggested
by Roger Billard etc. The correctness of the methods of observation as we have seen
above will also support this possibility.
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11. CONCLUSION

In Vedanga period, there were only two kinds of astronomical instruments, namely
the gnomon and the clepsydra. In Classical Siddhanta period, several astronomical
instruments were used, and we can trace their development in astronomical literature
of this period.

Aryabhata (born 476 AD) already described several astronomical instruments,
and many later instruments can be considered to be their descendants. The time of
Brahmagupta (born 598 AD) appears to be the time of transition, and some new
instruments were added. Lalla further added some new instruments and changed the
construction of some instruments. Sripati (11th century AD) mainly followed Lalla.
Bhaskara II (born 1114 AD) simplified the description of astronomical instruments,
and added two instruments, namely the dhi-yantra and the phalaka-yantra. Among
them, the phalaka-yantra is an ingenious instrument.

Besides, some interesting instruments are described in anonymous Siddhantas.
Among them, the quadrant and the horizontal gnomon described in the Vrddha-
vasistha-siddhanta are important, and may be a kind of forerunner of later developed
instruments.

We should also note that the methods of observation were explained by Bhaskara
II in detail. This paper is confined to the theoretical aspect of the instruments, and we
should further investigate the condition of the actual use of these instruments.

The development of the astronomical instruments in Classical Siddhanta period
can roughly be tabulated as Table of Astronomical Instruments. (I excluded anonymous
works from the table, as the date of most of them is not certain.)
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Acharya, P.K. (ed.): Manasara on Architecture and Sculpture, Sanskrit Text with critical notes,
Oxford (1934), pp.14-15.

Acharya, P.X. (tr.): Architecture of Manasara, Translated from Original Sanskrit, Oxford (1934),
p.24.

Ibid., p.26.

Dagens, Bruno (ed. and French tr.) : Mayamata, Traité Sanskrit d'Architecture, 2 parts, Pondichéry
(1970-76); and Dagens, B. (English tr.): Mavamata, New Delhi (1985).

Yano, Michio, op.cit. (Indo-Iranian Journal, 29 (1986) 17-29).

Acharya, P.K.: "Determination of Cardinal Points by means of a Gnomon", in Proceedings, Fifth
Indian Oriental Conference, vol.1, Lahore (1928), 414-427. Also see P.K. Acharya's footnote in his
English translation of the Manasara, op.cit. (1934), pp.24-25.

Filliozat, J.: "Sur une série d' observation indienne de gnomonique”, originally written in 1951,
reprinted in his Laghu-prabandhah, Leiden (1974), pp. 271-273.

Dagens (ed. and French tr.), part 1, op.cit (1970), pp.70-72.

Ibid., part 2, (1976), p.490.

Yano, Michio, op.cit. (Indo-Iranian Journal, 29 (1986) 17-29), pp.24-25.
Ibid., p.25.

Dagens, B. (English tr.), op.cit. (1985), p.xi.

See my previous paper (IJHS, 28 (1993)), 2. ii.d (pp. 213-214).

P.K. Acharya's ed., p.15.

Dagens, B. (ed. and French tr.), part 1, op. cit. {1870), p.69.

Dagens, B. (English tr.), op.cit., (1985), p.11.

French original reads as follows.

"Sankudvigunamanena : 11 ne peut s'agir du rayon car ce dernier faisant alors deux coudées, le cercle
serait tangent aux bords du carré nivelé et il ne restrait plus de place pour tracer les cercles
complémentaires qui permettent de situer I'axe nord-sud et les directions intermédiaires.”

(Dagens (ed. and French tr.), op. cit., part 1, (1970), p.68, footnote 8.)
We know, by spherical astronomy, that

sin 8 = sin @. cos { + cos ¢. sin { cos A,

where 3 is the sun's declinatioin, ¢ the observer's latitude, { the sun's zentith distance, and A the sun's
azimuth (measured from the north). And also, we know that

sin & = sin €. sin A,

where € is the obliquity of the eccliptic, and A the sun's longitude.

If we assume that A = 20°, {=90° — archtant (2) = 63.°4, and A = 90° (hence cos A is zero), we get

¢ =18°

29)

If A is 30°, we get @ = 26° If & is 40°, we get @ = 35°

The rationale of the calculation of the actual corrction is as follows. From the first equation in the
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note 28) above, we have

sin & - sin @. cos {
cos Ax —m8 ————
cos @.sin §

The value of £ is (90° - arctant (¥2)) as before. From this equation, we can calculate the sun's azimuth A,
Let 6 be the difference betweent the azimuth A and 90°. Then, the chord of PW or P'E is 2r.sin (6/2), where
r is the radius of the circle.

30) Sudhakara Dvivedin's ed., p.207.

31) Colebrooke, Henry Thomas (tr.): Algebra with Arithmetic and Mensuration from the Sanscrit of
Brahmagupta and Bhdscara, London (1817), p.317.

32) See my previous paper (/JHS, 28 (1993)), 2.iii.a. (pp. 214-217)
33) R.S. Sharma's ed., vol.IIl, p.8%4.

34) Rangacarya, M. (ed. and tr.) : The Ganita-sara-sangraha of Mahaviracarya, Madras (1912), text : p.
153; tr.: pp. 276-277.

35) Dvivedi, Sudhdkara (ed.): Trifatika, $i 6 Sﬁdharﬁcirya—viracitﬁ, Benares (1899), p.45.

36) Pingree, D.: "The Ganitapaficavimél of Sridhara”, Rtam, Ludwik Sternbach Ferlicitaton Volume,
Lucknow (1979), 887-909; p.906.

37) D. Pingree's ed., text : vol.I, p.500; tr. : vol. I, p.189,

38) For the Indian origin of these formulae, see my previous paper (JJHS, 28 (1993)), 2.iii.c. (pp. 222-
225)

39) Thibaut an Dvivedin (ed. and tr.), text : p.17, tr.: pp.34-35; or Neugebauer and Pingree (ed. and tr.),
part 1, pp.66-67.

40) Thibaut and Dvivedin (ed. and tr.), text : p.6, tr.; p.12: or Neugebauer and Pingree (ed, and tr.), part
1, pp.36-37.

4]1) Rangacarya's ed., text : p.154; tr.: p.278.
Section 3.iv)...
1)  Jyautisa-siddhanta-sangraha, fasc.2 (1917), p.30.

2)  For the astronomical instruments of Delhi Sultanate and Mughal periods, see Ohashi, Yukio :"Sanskrit
Texts on Astronomical Instraments during the Dethi Sultanate and Mughal Periods”, Studies in History
of Medicine and Science, vols. X-XI, (1986-87), p.165-181.

Section 4.ii)

1)  Shukla, K.S., op.cit. (Ganita, 18 (1)(1967) 83-105), pp.92-93.

2)  Ibid, pp.95-96

3) I have followed K.S. Shukla's explanation. (See ibid., p.96.)

4) This is from a manuscript Lucknow 45749, (Commentary on the Surya-siddhanta (X111.25))
5)  Bina Chatterjee (ed.), part 1, p.247.

6)  Ibid., part 2, pp.288-289.

7)  Babuidji Misra's ed., part 2, pp.296-298.

Section 4.iii)

1)  Shukla, K.S., op.cit. (Ganita, 18 (1)(1967) 83-105), p.93.
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Ibid., p.99.
Ibid., pp93-94.
Ibid., pp.99-100.
This is from a manuscript Lucknow 46145, (Commentary on the Sarva-siddhanta (X111.20-21).)
Shukla, K.S., op.cit. (JJHS, 12 (1977) 181-186), P.185.

Section 4.iv)...

1)

2)

3)

4)

5)

6)

7

8)
9)

Thibaut, G. and Sudhakara Dvivedin (ed. and tr.), op.cit., (1889), text : pp.37-38, Sanskrit commetary
: pp.72-75, English translation : pp. 75-78.

Neugebauer, O. and David pingree (ed. and tr.), op.cit., 2 parts, (1970-71), text and tr.: part 1, pp.122-
125, and commetary : part 2, pp.85-88.

Since published as Ohashi, Yukio :"Varahamihira's Orthographic Projection .... An Interpretation of
the Pancasiddhantikda XIV.5-11", Journal of the Asiatic Society, vol.xxx, (1989), pp.66-76.

Thibaut and Dvivedin (eds.), op.cit., pp.37-38, left column. They used two manuscrips of the text,
and they printed the reading of one text which they considered to be better. The reading of the other
text has been mentioned in their footnotes. I have basically followed the reading chosen by them.

Thibaut and Dvivedin (ed. and tr.), op.cit., p.75.
Bina Chatterjee's ed., part 1, p.247.

Ibid., part 2, pp.289-290.

S.R. Sarma's ed. (1966), part 1, p.29.

Ibid., part 2, p.94.

Section 5.i1)...

1y
2)
3)
4)
5)
6)
7
8)

Shukla, K.S., op.cit. (Ganita, 18 (1) (1967) 83-105), p.93.

Tbid., p.98.

Sudhakara Dvivedin's ed., pp.386-394.

See Yano, Michio, op.cit. (Indo-Iranian Journal, 29 (1986) 17-29), pp.19-20.

Bina Chatterjee's ed., text: part 1, pp.247-248; K.S. Shukla's tr.: ibid. part 2,pp.289-290.
Babuiji Misra's ed., part 2, pp.295-296.

See Burgess and Whitney's tr., op.cit., p.306.

See Sastri and Wilkinson's tr., op.cit., pp.218-221.

Section 5.iii)...

1)
2)
3)
4)

See Bina Chatterjee's tr., part 2, p.99.
Babuaji Misra's ed., part 1, pp.302-303.
See D. Arkasomayaji's tr., pp.328-329.
See K.S. Shukla's tr., part 2, p.288.

Section 5.iv)...

1

See Bina Chatterjee (ed. ant tr.), part 2, pp. 287-288.
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Section 5.v)...

1)  Thibaut and Dvivedin's ed., pp.38-39; or Neugebauer and Pingree's ed., p.124 and 126. I have followed
Neugebauer and Pigree's reading.

2) Sudhikara Dvivedin's ed., p.388.

3)  See Bina Chatterjee (ed. and tr.), part 2, p.288 and 290.

4)  Babuiji Misra's ed., part 2, p.259.

Section 5.vi)...

1)  Sudhakara Dvivedin's ed., pp. 390-394.

Section 5.vii)...

1} See Sastri and Wilkinson's tr., pp.211-226.

2)  Anandisrama ed., Gola, part 2, p.407.

Section 6.ii)...

1) K.S. Shukla, op.cit. (Ganita, 18 (1) (1967) 83-105), p.93.

2)  Ibid., p.98.

3) This is from a manuscript Lucknow 45749. (Commentary on the Surya-siddhanta (X111.25).)
4)  This is from a manuscript Lucknow 46145. (Commentary on the Surya-siddhanta (XI11.20-21).)
5)  K.S. Shukla, op.cit. (/JHS, 12 (1977) 181-186), p.185.

6)  Thibaut and Dvivedin's ed., p.40; or Neugebauer and Pingree's ed., part 1, p.128. 1 have followed
Thibaut and Dvivedin's reading.

3

7 According to Sudhakara Dvivedin's Sanskrit commetary, the word "anyaksa” means "madhya-natamsa’
(midday zenith distance). (Thibaut and Dvivedin, op.cit., p.77)

8) Sudhakara Dvivedin's ed., p.386.

9)  Bina Chatterjee's ed., part 1, p.244.

10) Ibid., part 2, pp.283-284.

11) Ibid.. footnote.

12) Babuaji Misra's ed., part 2, p.287.

13) Anandaisama ed., Gola, part 2, pp.367-368. Also see Sastri and Wilkinson's tr. p.212.
Section 6.iii)...

1)  Shukla, K.8,, op.cit. (Ganita, 18(1) (1967) 83-105), p.93.

2)  Ibid., p.97

3)  This is from a manuscript Lucknow 46145. (commetary on the Surva-siddhanta (XII1.20-21).)
4)  K.S. Shukla, op.cit. (IJHS, 12 (1977) 181-186), pl85.

5)  Sudhakara Dvivedin's ed., pp.382-385.

6)  Bina Chatterjee's ed., part 1, p.244.

7)  Ibid., part 2, p.284.

8)  Babudji Misra's ed., part 2, p.287.
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See Sastri and Wilkinson's tr., p.212,

Section 6.iv)...

1)
2)
3)
4)

Sudhakara Dvivedin's ed., p.385.
See Sastri and Wilkinson's tr., p.212.
Jyautisa-siddhanta-sangraha, fasc. 2 p.29.

For the astronomical instruments of Delhi Sultanate and Mughal periods, see Ohashi, Yukio : "Sanskrit
Texts on Astronomical Instruments during the Delhi Sultanate and Mughal Periods”, Studies in History
of Medicine and Science, vols. X-XI, (1986-1987), pp.165-181.

Section 6.v)...

D
2)

See Bina Chatterjee (ed. and tr.), part 2, p.286 (K.S. Shukla's tr.).
See Sastri and Wilkinson's tr., pp.210-211.

Section 6.vi)...

D
2)
3)
4)

Sudhakara Dvivedin's ed., p.396.
Bina Chatterjee's ed., part 1, p.244.
Ibid., part 2, pp.284-5.

Babuaji Misra's ed., part 2, p.289.

Section 6.vii)...

1)

2)
3)
4)
5
6)

Thibaut and Dvivedin's ed., pp.39-40; or Neugebauer and Pingree's ed., part 1, p.128.
I have followed Thibaut and Dvivedin's reading.

Neugebauer and Pingree (ed. and tr.), part [, p.129.

Sudhikara Dvivedin's ed., pp.395-396.

Bina Chatterjee's ed., part 1, p.244.

Ibid., part 2, p.285.

Babuaji Miséra's ed., part 2, p.290.

Section 6.viii)...

1
2)
3)
4)

Sudhakara Dvivedin's ed., pp.396-397.
Bina Chatterjee's ed., part 1, p.244.
Ibid., part 2, p.285.

Babuaji Misra's ed., part 2, pp.290-291.

Section 6.ix)...

1)

See K.S. Shukla's tr., pp.94-95.

Section 7.1)...

)]
2)

Jvautisa-siddhanta-sangraha, fasc.l, p.34.

K.V. Sarma's ed. and tr., op.cit. (Brahmavidva, 20(1-2) (1956) 119-186, and 21 (1-2) (1957) 87-144).
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Section 7.ii)...

1y
2)
3)

4)
5)

Shukla, K.S. and K.V. Sarma (ed. and tr.), (Pt.1), (1976), p.129.
Ibid.

See K.S. Shukla's ed. of Some$vara’s commentary on the Arvabhativa, (1976), p.268. Also see K.S.
Shukla and K.V. Sarma’'s ed. and tr. of the Aryabhativa, (Pt.1), pp.129-1360.

See K.S. Shukla (Ganira, 18(1) (1967) 83-105), pp.100-101.

Thibaut and Dvivedin's ed., p.40; or Neugebauer and Pingree's ed., p.128 and 130. I have followed
Neugebauer and Pingree's reading.

Section 7.iii)...

1)
2)

3)
4)
5)

Sudhakara Dvivedin’s ed., pp.375-380.

In the actual calculation of five planets in the Brahma-sphuta-siddhanta (and also in the Siddhanta-
Siromani), the manda-phala is a function of the true anomaly of the planet, and not of the mean
anomaly of the planet. The process of the calculation is as follows. Firstly, the manda-phala is
calculated from the mean planet, and is applied to the mean planet. The result is the manda-sphuta.
Secondly, the §inghra-phala is calculated from the manda-sphuta, and is applied to the manda-
sphuta. The result is the true planet after the first approximation. From the result, the manda-phala
is calculated and applied to the original mean planet. From this result, the §ighra-phala is calculated
and applied. The result is the true planet after the second approximation. This process is repeated
unitl a constant value is obtained. (In the case of Mars, this method is not used. Firstly, a half of the
manda-phala and a half of the §ighra-phala are applied, and the once corrected Mars is obtained.
From the result, the manda-phala is calculated, and its whole amount is applied to the original mean
Mars. From this result, the §ighra-phala is calculated and applied. The result is the true Mars.)

See Bina Chatterjee's tr., part 2, pp.232-37.
Babuaji Miéra's ed., part 2, pp.207-217.
See Sastri and Wilkinson's tr., pp.151-160.

Section 7.iv)...

D
2)
3)
4)

See Chatterjee, Bina (ed. and tr.), part 2, pp.280-281.
See Burgess and Whitney's tr., pp.298-304.
Babuaji Misra's ed., part 2, pp.279-280.

See Sastri and Wilkinson's tr., p.210.

Secxtion 7.v)...

D
2)

3)
4)
6)
6)

k)

Needham, Josheph : Science and Civilisation in China, vol.3, Cambridge (1959), p.340 and 382.

"The Almagest of Ptolemy", translated by R. Catesby Taliaferro, in Great Books of the Western
World, vol.16, Chicago (1952), pp.261-263. ‘

Tbid., pp.143-144,
Ibid., p.25.
Ibid., p.78.

Colebrooke, H.T. : "On the Indian and Arabian Divisions of the Zodiac", originally in the Asiatic
Researches, 9 (1807), pp.323-376; reprinted in his Miscellaneous Essays, vol. 1I, (1837), reprinted
New Delhi (1977) 321-373; especially p.345 ff.

Ibid., p.351.
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See, for ecsample Needham, op.cit. (1959), pp.339-390; and Bo Shuren: "Astrometry and Astrometric
Instruments”, in Institue of the History of Natural Sciences (ed.): Ancient China's Technology and
Science, Beijing (1983), pp.15-32.

Needahm, Joseph, Wang Ling, and Derek J. Price : Heavenly clockwork, Cambridge (1960) is a
detailed study of this work.

Section 8.i)...

1

See my previous paper (/JHS, 28 (1993)), 2.iv. (pp. 225-233)

Section 8.ii)...

b
2)
3)
4)
5)

6)
7
8)
9)
10)
11)
12)

K.S, Shukla, op.cit. (Ganita, 18(1) (1967) 83-105), p.95.
Ibid., p.101.
Ibid., p.95.
Ibid., p.101.

Thibaut and Dvivedin's ed., p.41; or Neugebauer and Pingree's ed., part 1, p.132. I have followed
Thibaut and Dvivedin's reading.

Sudhakara Dvivedin's ed., p.395.

Bina Chatterjee's ed., p.246.

Ibid., part 2, p.287.

See Burgess and Whitney's tr., p.308.
Babuiji Miéra's ed., part 2, pp.293-294.
See Sastri and Wilkinson's tr., pp. 211-212.

Anandasrama ed., Gola, part 2, p.366.

Section 8.iii)...

1)

2)

3)

4)

5)

6)
E]

Dowson, J. "On a newly discovered Bactrian Pali Inscription; and on other Inscriptions in the Bactrian
Pali Character”, Journal of the Royal Asiatic Socity, vol.20, (1863) pp.221-268, especilly p. 250f;
Senart, M.E. "Notes d'epigraphie indienne, V1", Journal Asiatique, sér. 9, tome 7, (1896), pp.5-25;
Liiders, H. “The Manikiala Inscription”, Journal of the Roval Asiatic Society, (1909), pp.645-666;
Pargiter , F.E, "The Inscription on the Manikiala Stone", Journal of the Royal Asiatic Society, (1914),
pp.641-660; and Konow, Sten : Corpus Inscriptionum Indicarumm, vol.Il, part 1, Kharosthi Inscriptions,
Calcutta (1929), pp.145-150. According to Konow, this inscription's date is AD 145, All interpretations,
except that of Pargiter, suggest nothing about water clock.

Pargiter, op.cit. (JRAS, 1914, 641-660); and Pargiter, F.E, "The Telling of Time in Ancient India".
Journal of the Royal Asiatic Society, (19153), pp.699-715, especially pp.703-704.

Hultzsch, E. : "An Earthenware Fragement of Guhasena of Valabhi", Indian Antiquary, vol. XIV,
(1885), p.75.

Fleet, J.F. : "The Ancient Indian Water-clock", Journal of the Royal Asiatic Society (1915), pp.213-
230, especially p.230.

Sarma, S.R. : "Zeitmessung im 7. Jahrhundert in Indien", unpublised paper (1989). I am grateful to
Dr. S.R. Sarma who kindly sent me this paper.

Pant, Pracara Mohandeva (ed.) : Kddambari (Pirva-ardha), Delhi, Motilal, (1976) p.245.

His name was transcribed as I-Tsing by Takakusu, Junjird.
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The original text is included in the Taisho-shinshii-daizokyo (Taisho edition of Chinese Tripitaka),
vol. 54, Tokyo (1928), (Text no. 2125). There is an English translation by Takakusu, Junjiro : A
Record of the Buddhist Religion as practiced in India and Malay Archipalego (AD 671-695) by I-
Tsing, Oxford (1896). The description of the clepsydra is in chapter 30 (Taisho ed., pp.225-226;
Takakusu's tr., pp.140-146.)

[ have translated from Taish6 edition, p.225.
Sachau, Edward C. (tr.): Alberuni’s India, London (1910), reprinted New Delhi (1983), vol.1, p.334.

See Qaisar, Ahsan Jan : The Indian Response to European Technology and Culture (A.D. 1498-1707),
Delhi (1982), p.65; and Eiliot, H.M. and John Dowson (tr. and ed.): History of India, as told by its
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Beveridge, Annette Susannah (tr.): Babur-nama (Memoirs of Babur), (1922), reprinted New Delhi
(1979), pp.516-517.

Jarrett, H.S. (tr.): A ‘In-i Akbari by Abu'l-Fazl ‘Allami reviced by Jadunath Sarkar, vol.Ill, Calcutta
(1948), reprinted New Delhi (1978), pp.17-18.

Sarma, Sreeramula Rajswara : "Astronomical Instruments in Mughal Miniatures", Studien zur Indologie
und Iranistik, Band 16/17, (1992), pp.235-276, especially pp. 241-243 and plates 2 and 3.

Gilchrist, John : "Account of the Hindustanee Horometry", in Asiatic Researches, vol.5 (1797) 81-
89, p.87.

Martin, Montgomery (ed.) : The History, Antiquities, Topography, and Statistics of Eastern India, vol.
5, "Rangpur and Assam"”, (1838), reprinted Delhi (1976), pp.506-507.

von Schlagintweit-Sakiinliinski, Hermann : "Eine Wasseruhr und eine metallene Klangscheibe”, in
Sitzungsberichte der Baverischen Akademie der Wissenschaften, math.-phys. Classe, 1 (1871) 128-
138.

Fleet, J.F. : "The Ancient Indian Water-Clock", Journal of the Roval Asiatic Society, (1915) 213-230.

Pargiter, F.E. : "The Telling of Time in Ancient India", Journal of the Royal Asiatic Society, (1915),
pp.699-715.

Jacobi, Hermann : "Einteilung des Tages und Zeitmessung im alten Indien", Zeitschrift der Deutschen
Morgenlandischen Gesellschaft, 74, (1920), pp.247-263.

Section 8.iv)...

1)
2)
3)
4)
5)
6)

See K.S. Shukia, op.cit. (Ganita, 18(1) (1967) 83-105), pp.100-101.

Thibaut and Dvivedin's ed., pp.40-41; or Neugebauer and Pingree's ed., part 1, p.130.
Sudhdkara Dvivedin's ed., pp.397-399.

See Chatterjee, Bina (ed.), part 2, pp.282-283.

See Burgess and Whitney's tr., pp.306-308.

Babuiji Misra's ed., part 2, pp.284-286.

Section 8.v)...

1)
2)
3
4)

Sudhakara Dvivedin's ed., p.399-400.
See Chatterjee, Bina (ed.), part 2, pp.281-282.
Ibid., p.283.

See Burgess and Whitney's tr., p.305.
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5)  Babuaji Misra's ed., part 2, pp.282-283.
6) See Sastri and Wilkinson's tr., pp.227-228.
7)  Needham, Joseph, Wang Ling, and Derek J.Price : Heavely Clock Work, Cambridge (1960), p.192.
Section 8.vi)...

1)  Hall and Sastri's ed., p.324. Actually, vs.21 has three half-verses in this edition and the half-verses
which I guote here are 21(ii and iii).

2) Burgess and Whitney's tr., p.307.

3)  K.S. Shukla's ed., (1957), p.136.

4)  Ibid., p.136, footnote 3.

5)  AS Calcutta G-10758, folio 152a. Here, the quarter verse reads "sa-siitra-venu-garbha-sthe".

6)  Lucknow 47051, folio 43a. (This is actually a photo-copy of AS Bombay Bhau Daji -294.) Here, the
quarter verse reads "sva-slitra-venu-garbhais taih".

7)  Lucknow 45760, folio 98 a. Here, the quarter verse reads "sa-siitra-venu-garbhas taih".
8)  Lucknow 46145, p.336. Here, the quarter verse reads "sa-siitra-venu-garbha-sthaih”.

9)  For the astronomical instruments of Delhi Sultanate and Mughal periods, see Ohashi, Yukio : "Sanskrit
Texts on Astronomical Instruments during the Delhi Sultanate and M_.gnal Periods". Studies in History
of Medicine and Science, vols. X-XI, (1986-87), pp.165-181. Tor the sand-clock, see Sarma, SR,
op.cit. (Studien zur Indologie und Iranistik, Band 16/17, 1992, 235-276), p.243 f.

Section 9....

i) See Sastri and Wilkinson's tr., pp. 213-218. Also see Gurjar, L.V., op. cit. (1947), pp. 168-173; and
Ray, R.N., op.cit.,, (1985), pp.328-332.

Section  10.D)....
1) Ananda$rama ed., no. 110, part 1, pp.18-24.
2) Pandey, C.B. (ed.), Varanasi (1981), pp. 4-5.
3) Ibid., pp.98-99.
4) Shukia, K.S. (ed.), (Pt.2), (1976). pp.283-286.
Section  10.ii)...
1) Shukla, K.S. and K.V. Sarma (ed. and tr.), (Pt.1), (1976), p.162.
2) Ibid.
Section  10.iii)...
1) Anandiérama ed., no. 110, part 1, p.114.
2) D. Arkasomayaji's tr. (1980), pp.170-171.



