UGC Sponsored Conference

on

Einstein's Theories and Present Scenario

$17^{\text {th }}, 18^{\text {th }}$ and $19^{\text {th }}$ November, 2005, Thane

Editorial Committee

Prof. V. D. Golatkar
Dr. M. N. Nyayate
Prof. N. D. Mandge
Prof. A. A. Kale

Organised by

Department of Physics
Vidya Prasarak Mandal's
B.N. Bandodkar College of Science
"Jnanadweepa", Chendani, Bunder Road,
Thane (W) 400 601. Maharashtra
and

Marathi Vidnyan Parishad, Thane Vibhag
Dr. H.S. Bhanushali Hospital, "Kaushalya",
Shivaji Path, Thane (W) 400602.

Please Note:
The Authors of the papers are alone responsible for technical content of the papers and references cited therein.

Published by :
Department of Physics
VPM's B.N. Bandodkar College of Science
"Jnanadweepa", Chendani, Bunder Road, Thane (W) 400 601. Maharashtra
and
Marathi Vidnyan Parishad, Thane Vibhag
Dr. H.S. Bhanushali Hospital, "Kaushalya",
Shivaji Path, Thane (W) 400602.

Printed at
Perfect Prints
22, Jyoti Industrial Estate,
Nooribaba Darga Road, Thane 400601.
Tel. : 25341291 / 25413546
Email : perfectprints@vsnl.net

From the Chairman's Desk

Dear sir/Madam

I have great pleasure in publishing the proceedings of the three-day conference on Einstein's Theories \& Present Scenario, which was held on $17^{\text {th }}, 18^{\text {th }} \& 19^{\text {th }}$ November in the year 2005 in celebration of the centenary of his theories, which he had proposed in the year 1905.

Many prominent scholars have presented their papers in this volume and I am sure the content of this volume will be a useful additional reading on the subject.

Einstein submitted four papers to a German language journal Annalen der Physik in the year 1905. These papers are commonly referred as Annus Mirabillis Papers. They form the foundation of the Modern Physics.

His papers on special theory of relativity and on electromagnetic radiation revolutionized our understanding of Universe.

These theories became the basis of quantum theory and theory of atomic phenomena.

In the year 1921 Einstein was awarded the prestigious Noble Prize for his work on photo electricity. Though all four papers published by him in the year 1905 deserved to be mentioned in the citation, only his work on photo electricity is mentioned in the citation.

Einstein's fourth paper published in year 1905 (September 27) in the journal Annals der Physik contains the most famous equation $\mathbf{E =}=\boldsymbol{m c}^{2}$.

The International Union of Pure and Applied Physics decided to commemorate the $100^{\text {th }}$ year of the publication of Einstein's work in 1905 as the year of Physics which subsequently was endorsed by the United Nations.

Impact of his theories is so immense that its influence goes beyond physics.
His theories have changed our worldview. In his general theory of relativity, which he proposed ten years after his special theory of relativity, gravity was included in the framework. This radically modified our concept of time and space.

Einstein strongly believed in the inherent harmony of the nature. He has given us a new vision.

I am sure seminars like this will help us understand his theories better.
Thanking you

Vijay Bedekar

Chairman,
Vidya Prasarak Mandal, Thane

Foreword

It is a great pleasure to give this sovenir in your hands as the convener of the conference.

This year being the $100^{\text {th }}$ Anniversary of Einstein's research papers it was celebrated as the year of Physics all over the world. We thought of giving our tribute to the eminent scientist by conducting a conference on his own theories \& try to bring Einstein in front of the students \& common man.

I am really happy for overwhelming response we received. Prof. Jayantrao Naralikar's name, worked as a magnet as Gadkari Rangayatan was housefull for the open lecture \& some interested crowd had to go back home as there was no place to seat. Some people later preferred to seat on the stairs \& hear Prof. Naralikar. We are thankful to Prof. Naralikar for giving all three days for us.

The star gazing programme with four to five telescopes \& about 100 pairs of eyes gazing at the sky was a wonderful experience on the terrace of our college. We are thankful to Mr. D. K. Soman for conducting such an excellent open session.

Similarly, we are also thankful to all the research scientists from TIFR, BARC, University of Mumbai, IUCCA Indian Planetary Society of India who have given their valuable time for conference.

The participation of Marathi Vidnyan Parishad, Thane Vibhag as co-organizers was very fruitful.

We are also thankful to all the supporters who have given their advertisement in our sovenir. Thanks are also due to UGC as they have sent the money very promptly.

I appreciate the full support of our Vidya Prasarak Mandal, my teacher colleagues \& nonteaching staff, the students of our college \& all participants.

Let us meet on the same platform with some other issues to discuss.

Dr. Madhuri Pejaver

Convener, Principal
B.N. Bandodkar College of Science, Thane

Preface

The fundamental momentous discoveries in physics like X-rays (1895), Radioactivity and Raman effect (1896), Electron (1897) Quantum Theory (1900), explanation of Photoelectric effect and Relativity (1905), 1st trans-Atlantic telegraphic radio transmission and the existance of ionosphere were made in the decade 1895-1905. The Theory of relativity is a feather in the cap of discoveries made in this decade. Individually, each discovery had enormous significance while collectively it gave birth to so called "Modern Physics". It was the result of the collective efforts taken by the makers of the Modern Science, their approach and methods, dedication and sacrifice and desire to share their knowledge with others. Hence 1895-1905 decade is also known as "Golden Decade".

1905 was the most innovative year in which Albert Einstein published important papers that have drastically modified the theories of several scientist, the way we understand space, time, energy and mass. SR helps us understand the relation between mass and energy, i.e., they are interchangable/equivalent. Space and time are not static. Papers published on SR \& GR have completely changed our views about science and the Universe. In fact the very existance of life on the Earth is because of relativity that governs the production of energy in the Sun. These papers have affected our everyday life. Hundreds of gadgets, digital cameras, photocell, CD, DVD players, laser printers, scanners and many more that are based on Principles defined by Einstein.

Physics not only plays an important role in the development of science and technology but also has a tremendous impact on our society. Although physicst may be aware of this, the public is not. Hence its the need for celebrating the International Year of Physics.

In its statement on celebration of IYP, the United Nations General Assembly said, "The aim of this International Year goes beyond the celebration of one of the greatest minds in physics of the twentieth century. This year will provide the world with an opportunity for the largest possible audiences to acknowledge the progress and importance of this great field of science. One will remember, lasers, magnetic resonance imagery are pure products of the last decades of fundamental research in laboratories of physics., where tomorrow's materials and technologies of information are worked out today. We can stimulate the interest of young people to pursue scientific careers and to revive in them a taste for the scientific approach. This must be national as well as worldwide endeavour. It is indeed essential to understand that the twentyfirst century will have an increasing need for the concepts and tools provided by the physical sciences in finding solutions to major problems which confront us, such as energy production, environmental protection and even public health.

As per the objectives of the IYP \& century celebration of Einsteins theories, conference was arranged on $17^{\text {th }}, 18^{\text {th }} \& 19^{\text {th }}$ November 2005. Eminent scientist from repurted institutions participated in the conference and presented their views.

I am sure that the conference would have helped the students / teachers and other Einstein lovers understand Einstein's Theories better.

On behalf of members of staff of Physics Dept. I thank Dr. V. V. Bedekar, Chairman Vidya Prasarak Mandal, Principal Dr. M. Pejaver, Dr. H. S. Bhanushali \& other members of Marathi Vidnyan Parishad for there promissing support. Our special thanks to Prof. Jayantrao Narlikar \& other guest speakers, members of Advisory committee and participants of the conference that without their active support it would have not been possibale to make the conference successful. We can't forget UGC, the major Sponsor and other Sponsors to the conference. Sincere thanks to all who have worked for the conference and the proceedings.

Prof. N. D. Mandage
Organising Secretary

Marathi Vidnyan Parishad, Thane Vibhag

Marathi Vidnyan Parishad, is an institute (Non Government Organisation) registered with Govt. and having Head Office "Vidnyan Bhavan", V. N. Purav Marg, Sion, Chunabhatti. The Parishad is further subdivided into various branches, affilliated to the central Head Office for convenience of working. Marathi Vidnyan Parishad has the privilege of having associated with world known scientists like Dr. Raghunath Mashelkar, Dr. Anil Kakodkar, Dr. Vasant Govarikar, Dr. Anand Karve \& Dr. Jayantrao Narlikar. They are regularly participating and interacting in our programmes.

Ours is "Thane Vibhag" activily contributing since over last 35 years, working presently under the leadership of Dr. H.S. Bhanushali, a reknown surgeon, recently honoured by President of India.

Some of our Main Objectives are listed as under :

1) Propagation of Scientific views, scientific explanations behind the day to day happenings to common man in simplest ways.
2) Creating interest, mainly in Students of Science and Technological Development and research that is contributing to Development and Progress of the man kind.
3) To establish and encourage interaction between Scientists, Researchers with Students / Teachers and common man.

For achieving such important objectives we organise and hold various programmes like :
i) Conducting series of Lectures for Students / Teachers in Schools \& Colleges.
ii) Training the Science Teachers of schools through co-ordination and involvement of IUCCA, Pune. These trained teachers in turn are expected to contribute in helping students in schools in respect of learning the Scientific principles behind every event including the toys and learning aids.
iii) Participating in Programmes arranged by other organisations with presentations on subjects that are of interest and concern to common people, such as Health Awareness, Conservation of Energy, Zero Garbage concepts etc.
iv) Presenting Models/Floats while participating in Processing arranged by others to arouse interest of spectators on subjects like Solar Energy, Pollution control, Conservation of Energy etc.
v) Organising Exhibitions for Students and common people in which, students and some industries display their Experiments / Technologies that clarify scientific angles and details behind them.

Marathi Vidnyan Parishad, Thane Vibhag has organised three All India Science Conferences together with Science Exhibitions, during the last 35 years. Recently, during Dec. 2003, All India Marathi Vidnyan Conference was organised at Gadkari Rangayatan, Thane. Together with Science Exhibition at Shiv-Samarth Vidyalaya Grounds and Question / Answers
session between great Scientist Dr. Vasant Govarikar, Dr. V.G. Bhide and around 15,000 Schools/College Students, Teachers and Public in general at Dadoji Kondev Stadium.

All Teachers / Students and other citizens can join hands by becoming member of Marathi Vidnyan Parishad, Thane Vibhag.

Dr. H.S. Bhanushali
President

Prof. N.D. Mandge
Shri Arvind Palkar

Shri D.K. Soman Shri Nandkumar Rage

Vice-President

Secretary

VPM's B. N. Bandodkar College of Science, Thane

Vidya Prasarak Mandal (VPM) is a premier educational trust in Thane. B. N. Bandodkar College of Science is one of the several illustrious, model institutions belonging to VPM. The beginning of this institution, which now runs several schools \& colleges, was very modest. On April 7, 1932, one secondary trained teacher named Trimbak Raghunath Ghanekar, started a small school with five children in one room of a bungalow in Thane's Naupada area. Soon he handed over the school to a Mandal, which obtained the Government's sanction for the school.

VPM was established in August 1935. Dr. V. N. Bedekar, former President had a dream of creating an 'Island of Knowledge' (Jnanadweepa) in Thane \& with singular zeal, exemplary perseverance \& with wholehearted support from his colleagues, succeeded in realizing it.

The next step was to start a college. The college was to be named as 'Balkrishna Naik Bandodkar College of Science'. The foundation stone of the Science College building was laid on 1st June 1969.

The 'Island of Knowledge' on which the various colleges of VPM now proudly stand was originally a marshy, muddy, barren piece of land. At high tide it was flooded with water \& at low tide covered with mud, which has been developed into clean, spacious premises for the academic institutions. Each year brought fresh improvements \& the process still continues. In June 1975, the affiliation of college was changed to University of Mumbai from University of Pune. VPM has gone through many vicissitudes while undertaking multifarious educational ventures during this span of time, and has come out very successfully not only in academic side but in other cultural activities also. VPM ows its prosperity to the generous help of donors and well wishers for which VPM is always grateful to them.

VPM'S INSTITUTIONS

- Dr. Bedekar Vidya Mandir [Marathi Medium]
- Sou. A. K. Joshi English Medium School
- B. N. Bandodkar College of Science
- K. G. Joshi College of Arts
- N. G. Bedekar College of Commerce
- TMC Law College
- V.P.M.'s Polytechnic
- V.P.M.'s Polytechnic IT Centre
- V.P.M.'s Advanced Study Centre
- Dr. V. N. Bedekar Institute of Research \& Management Studies

In 1969, the college started with the department of Chemistry, Mathematics, Zoology, Physics \& Botany. Statistics department started from 1977. now the college has the facility of imparting post graduation in Botany, Zoology \& Chemistry, Ph.D in Zoology \& B.Sc (Information Technology). The college has also the facility of M.Sc. (Information Technology). The unaided courses of Yashwantrao Chavan Maharashtra Open University (YCMOU) are B.Lib, M.Lib \& journalism. Some faculty of the college are also the recognized guides for M.Sc \& Ph.D at YCMOU

Advisory Committee

Prof. Jayantrao Narlikar
(Emeritus Professor, IUCAA, Pune)
Prof. S. M. Chitre
Prof. S. M. Roy (TIFR)
Prof. P. S. Joshi (TIFR)
Prof. S. B. Patel (UDP, University of Mumbai)
Prof. Mohanrao Apte
Prof. Urjit Yajnik (IIT, Mumbai)

Organizing Committee

Chairman

Dr. V. V. Bedekar

Convener

Dr. (Mrs.) M. K. Pejaver, Principal

Co-Convener

Prof. V. D. Golatkar
Organizing Secretary
Prof. N.D. Mandge

Teaching Staff

Prof. Ms. C. P. Shikarkhane
Prof. P. K. Bhat
Prof. A. D. Shet
Dr. M. N. Nyayate
Prof. S. Venkatraman
Prof. D. R. Chaudhari
Prof. S. G. Bapat
Prof. Ms. S. S. Meshram
Prof. Ms. U. B. Gokhe
Prof. B. K. Mandlekar
Prof. S. S. Bansode

Prof. S. D. Attarde
Prof. A. S. Adhali
Prof. M. Nair
Prof. R. V. Lele
Prof. Ms. S. S. Dhakne
Prof. Ms. V. K. Chaudhari
Prof. Ms. D. Mukadam
Prof. A. A. Kale
Prof. Ms. A. D. Gangal
Prof. Ms. B. B. Bhole
Prof. Ms. Deshpande

Non-Teaching Staff

Shri H. R. Dhami
Shri G. B. Sakpat
Shri K. B. Dethe
Shri S. M. Mali
Shri H. S. Naik
Shri D. B. More

Shri G. S. Bate
Shri P. P. Mahashabde
Shri H. K. Naware
Shri A. Y. Burange
Miss A. A. Gandre
Shri Ranjeet
Shri Yogesh

B. N. Bandodkar College of Science, Thane Three Day conference on
 'Albert Einstein's Theories \& Present Scenario'
 by
 Department of Physics
 and
 Marathi Vidnyan Parishad, Thane Vibhag
 On 17th, 18th \& 19th November 2005

PROGRAMME

Day 1st Thursday, November 17, 2005
13.30 Hrs. to 14.30 Hrs. Registration
14.30 Hrs. to 15.30 Hrs. Inauguration
15.30 Hrs. to 15.45 Hrs. Tea
15.45 Hrs. to 17.00 Hrs. Prof. Virendra Singh, TIFR, Mumbai
(Albert Einstein : Miracle Year 1905)
18.00 Hrs. to 19.30 Hrs. Prof. Jayantrao Narlikar

Open Session : Gadkari Rangayatan
21.00 Hrs. to 00.00 Hrs. Sky Observation - Thane College Campus

Mr. D. K. Soman

Day 2nd Friday, November 18, 2005
8.30 Hrs to 9.00 Hrs

Morning Session :
9.00 Hrs. to 9.50 Hrs .
9.50 Hrs. to 10.40 Hrs.
10.40 Hrs. to 11.00 Hrs .
11.00 Hrs. to 11.50 Hrs .

Tea / Snacks
Chairman : Prof. S. J. Gupta, HOD, Department of Physics, University of Mumbai

Prof. Urjit Yajnik, IIT, Mumbai
(Einstein on Light : From waves to quanta and back)
Prof. Jayantrao Narlikar, IUCAA, Pune (Theory of Relativity II : Time keeping in Special Relativity)

Tea
Prof. Jayantrao Narlikar
(Einstein Theory of Special Relativity: Is it for ever)
11.50 Hrs. to 12.40 Hrs. Prof. Unnikrishnan, TIFR, Mumbai
13.00 Hrs. to 14.00 Hrs. Lunch

Afternoon Session : Chairman : Dr. J. J. Rawal
14.00 Hrs. to 14.50 Hrs. Prof. Unnikrishnan
14.50 Hrs. to 15.40 Hrs. Prof. T. P. Singh, TIFR, Mumbai
15.40 Hrs. to 16.00 Hrs. Tea
16.00 Hrs. to 17.00 Hrs. Prof. G. Ravikumar, TIFR, Mumbai
(A brief history of Photoelectric Effect 1905-2005)

Day 3rd Saturday, November 19, 2005
8.30 Hrs. to 9.00 Hrs. Tea / Snacks

Morning Session Chairman : Prof. Mayank Vahiya, TIFR, Mumbai
9.00 Hrs. to 9.50 Hrs .
9.50 Hrs. to 10.40 Hrs .
10.40 Hrs. To 11.00 Hrs. Tea
11.00 Hrs. to 11.50 Hrs. Prof. Arvind Kumar, Homi Bhabha Center, Mumbai
11.50 Hrs. to 12.40 Hrs. Prof. Ajit Kembhavi, IUCAA, Pune
13.00 Hrs. to 14.00 Hrs. Lunch

Afternoon Session : Chairman : Director, Nehru Planetorium
14.00 Hrs. to 14.50 Hrs. Prof. S. M. Chitre, TIFR, Mumbai
14.50 Hrs. to 15.40 Hrs. Prof. Mohan Apte, Mumbai
(Einstein's Theories in everyday life)
15.40 Hrs. to 16.00 Hrs. Tea
16.00 Hrs. to 17.00 Hrs. Concluding

Contents

Chairman's Desk. iii
Foreword. iv
Preface v
About Marathi Vidnyan Parishad vii
About VPM's B. N. Bandodkar College of Science. ix
Committee x
Programme. xi
Albert Einstein: His Miracle Year (1905). 1Prof. Virendra Singh
 11
प्रो. जयंत नारळीकर
Einstein on light : from waves to quanta and back. 14
Urjit A. Yajnik
Theory of Relativity - I. 15
Time-keeping in Special RelativityJayant V. Narlikar
Theory of Relativity - II. 20
Faster-than-light Motion
Jayant V. Narlikar
Einstein's Theory of Special Relativity : Is it for ever? 26
C. S. Unnikrishnan
Why was Einstein dissatisfied with Quantum Mechanics?. 46
and ..
Where does that lead us?
Prof. T. P. Singh
Einstein and Light Quanta. 51Prof. Arvind Kumar
A brief history of the Photoelectric Effect, 1905-2005 64
G. Ravindra Kumar
Albert Einstein : some simple truths. 65
Ajit Kembhavi
Role of Relativity in Astronomy and Astrophysics. 66
Dr. S. M. Chitre
Einstein's Ideas in every Day Life. 74Mohan Apte
Albert Einstein : Man and Scientist. 78Prof. Ajay Palekar
Science Fiction based on Einstein Theories. 81Bhavin D. Udani (Student)

Albert Einstein: His Miracle Year (1905)

Prof. Virendra Singh
Tata Institute of Fundamental Research, Mumbai

* Survival of London from Great fire;

Victory of English Fleet over Dutch

1666: Annus Mirabilis of Isaac Newton

In the beginning of the year 1665 I found the Method of approximating series and the Rule for reducing any dignity [power] of any Binomial into such a series [i.e., the binomial theorem]. The same year in May I found the method of Tangents ..., and in November had the direct method of fluxions [i.e. the differential calculus] and the next year in January had the Theory of colours and in May following I had entrance into [th]e inverse method of fluxions [i.e., the integral calculus]. And the same year I began to think of gravity extending to [th]e orb of the Moon and (having found out how to estimate the force with w[hi]ch [a] globe revolving within a sphere presses the surface of a sphere [i.e. the centrifugal force]): from Kepler's rule of the periodical times of the Planets being in sesquialterate proportion of their distances from the centers of their Orbs [i.e., Kepler's third law], I deduced that the forces w[hi]ch keep the Planets in their Orbs must [be] reciprocally as the squares of their distances from the centers about w[hi]ch they revolve: and thereby compared the force requisite to keep the Moon in her Orb with the force of gravity at the surface of the earth, and found them answer pretty nearly. All this was in the two plague years of 1665 and 1666. For in those days I was in the prime of my age for invention and minded Mathematicks and Philosophy more then [sic] at any time since ${ }^{[2]}$.

Albert Einstein (1879-1955)

Born : 14 March 1879
Presented a pocket compass (1884)
July 28, 1900 : Granted Diploma by ETH(Z)

Theoretical Physics - 5/6

Expt. Physics - 5/6
Astronomy - 5/6
Theory of functions - 5.5/6
Diploma paper - 4.5/6
Dec. 13, 1900 : Sends his first research paper for publication to A.P. (Annalen der Physik) June 23, 1902 : Starts working at Patent Office, Bern on Probation. SF 3500 p.a.

October 10, 1902 : His father dies
Jan. 6, 1903 : Marries Mileva Maric
May 14, 1904 : Birth of first son Hans Albert

Sept. 16, 1904 Confirmed in his job at Patent Office
(1901-1904) : Publishes 5 papers in A.P.
1905: Annus Mirabilis of Einstein. Completes five papers, including his Ph.D. dissertion, on Statistical Physics, Relativity and Quantum theory.

1905
March 18 : The paper "On a Heuristic Point of View Concerning the Production and Transformation of Light" recd. by A.P. [A.P. 17, 132-148 (1905)] Light Quantum paper

April 30 : Completes his Ph.D. dissertation "On a new determination of the Molecular Dimensions". Printed at Bern and submitted to Univ. of Zürich (accepted in July). [also A.P. 19, 289-306 (1906)] Molecular Size paper

May 11 : The paper "On the Motion of Small Particles suspended in Liquids at Rest Required by the Molecular Kinetic Theory of Heat" recd. by A.P. [A.P. 17, 549-560 (1905)] Brownian Motion paper

June 30 : The paper "On the Electrodynamics of Moving Bodies" recd. by A.P. [A.P. 17, 891-921 (1905)] Special Theory of Relativity paper

September 27 : The paper "Does the Inertia of a Body Depend on its Energy Content" recd by A.P. [A.P. 18, 639-641 (1905)] $\mathrm{E}=\mathrm{Mc}^{2}$ paper

December 19 : Another paper on Brownian Motion submitted to A.P.

A.E. to his friend Conrad Habicht, 18 or 25 May 1905

I promise you four papers ..., the first of which I could send you soon, since I will soon receive the free reprints. The paper deals with radiation and the energetic properties of light and is very revolutionary as you will see The second paper is a determination of the true sizes of atoms from the diffusion and viscosity of dilute solutions of neutral substances. The third proves that, on the assumption of the molecular [kinetic] theory of heat, bodies of the order to magnitude of $1 / 1000 \mathrm{~mm}$, suspended in liquids must already perform an observable random movement that is produced by thermal motion; in fact, physiologists have observed motions of suspended small, inanimate, bodies, which they call "Brownian molecular motion". The fourth paper is only a rough draft at this point, and is an electrodynamics of moving bodies, which employs a modification of the theory of space and time; the purely kinematical part of this paper will surely interest you. ${ }^{[4]}$

Thesis on Molecular Sizes

[1901: Thesis (first attempt) on topic $=$ Boltzmann's gas Theory and Drude's electron theory of metals? Withdrawn by Feb. 1902.
"The whole comedy has become tiresome for me" (A.E. to Michela Besso, Jan. 1903)]

The thesis has 2 main results

(i) Viscosity of dilute solutions:

$$
\begin{aligned}
& \eta_{s}=\text { viscosity of the solution (solute }+ \text { liquid) } \\
& \eta=\text { viscosity of the liquid }
\end{aligned}
$$

$$
\begin{aligned}
\eta_{s} & =\eta(1+2.5 \varphi) \\
\varphi & =\text { fraction of the volume occupied by solute molecules } \\
& =(4 \pi / 3) a^{3} N_{A} \rho_{\mathrm{S}} / \mathrm{m}_{\mathrm{S}} \Rightarrow \mathrm{~N}_{\mathrm{A}} \mathrm{a}^{3} \\
\mathrm{a} & =\text { radius of molecules, } \\
\rho_{\mathrm{S}} & =\text { mass density of the solute } \\
\mathrm{N}_{\mathrm{A}} & =\text { Avogadro number } \\
\mathrm{m}_{\mathrm{S}} & =\text { molecular weight of the solute mole. }
\end{aligned}
$$

(ii) Diffusion Coefficient D at temp T

$$
\begin{array}{cc}
D=R T /\left(6 \pi \eta N_{A} a\right) & R=\text { gas constant, } \\
\Rightarrow N_{A} a & P V=R T \\
\left(N_{A} a^{3}, N_{A} a\right) \Rightarrow\left(N_{A} a\right) &
\end{array}
$$

> A.E. chose the topic himself as was acknowledged by Alfred Kleiner, who reviewed the thesis along with H. Burkhardt. A.K. was professor of experimental physics at ETH. ETH was not allowed to grant Ph.D. degree till 1909. H.B. was Professor of Mathematics at Univ. of Zürich. (missed 2.5 too).
> Einstein motivated the thesis by pointing out that this is first determination of a using liquids. Earlier one depend on Kinetic theory of gases.
> A.K.: "the arguments and calculations to be carried out are among the most difficult in hydrodynamics".
> H.B.: "The mode of treatment demonstrates fundamental mastery of relevant math. methods." "adding one sentence" (A.E. to Seelig)
$>$ A.E. (1905): $\quad \mathrm{a}=9.9 \times 10^{-8} \mathrm{~cm}$ (Hydration)

$$
N_{A}=2.1 \times 10^{23}
$$

A.E. (1906) $\quad \mathrm{N}_{\mathrm{A}}=4.15 \times 10^{23}$ (use of improved data)
> Jan 1911: Hopf finds the missing factor 2.5
A.E. (1911) $\quad \mathrm{N}_{\mathrm{A}}=6.56 \times 10^{23}$ per mol.
> Initially foreshadowed by other (1905) papers
Eventually has the highest citation in view of its use by others.

BROWNIAN - MOTION

1. From the mid $-19^{\text {th }}$ Century, the atomic hypothesis was rapidly gaining ground among physicists and chemists.
2. "Energeticists": W. Ostwatd, Georg Helm, Evan E. Mach was also hostile to Atomists. They only admitted to heuristic usefulness of Atoms.
3. "In this paper it will be shown that according to molecular-kinetic theory of heat, bodies of a mircroscopically visible size suspended in liquids, must, as a result of thermal molecular motion, perform motions of such magnitude that they can be observed with
a microscope"
"It is possible that the motions to be discussed are identical with so called Brownian molecular motion; however the data available to me on the latter are so impressive that I could not form a judgement".
4. Robert Brown, 1828. random motion of pollen grains in a liquid.
(Drunkard's Walk around a lamp post).
explanation : vital forces, capillarity, convection Currents, evaporation, interaction with light, and elec. Forces etc.

Kinetic Theory (Von Nageli 1879 tried to rule this out)
> A.E. shows that for the suspended microscopic particles the diffusion coefficient D is given by

$$
\mathrm{D}=\mathrm{RT} /\left(6 \pi \eta \mathrm{aN}_{\mathrm{A}}\right)
$$

(In thesis, the same expression had occurred for solute molecules. Here it is for suspended particles. For this he first shows that Vant-Haff's law of osmotic pressure is valid for both solute molecules and suspensions using Molecular - Kinetic theory of Heat). Using diffusion equation he shows

$$
\left(\frac{1}{X^{2}}\right)=2 \mathrm{Dt} .
$$

> J. Perrin (1908-...) Beautiful expts on Brownian motion of colloidal particles
\Rightarrow precise value of Avogadro Number
\Rightarrow Triumph of Atomism, even Ostwald was convinced
"The atomic theory has triumphed. Until recently still numerous, its adversaries, at last overcome, now renounce one after another their misgivings, which were for so long, both legitimate and undeniably useful". (J. Perrin, Les Atomes, 1913) Nobel Prize to Perrin in 1926.
> Fluctuation Phenomenon, Stochastic Processes, ...

SPECIAL THEORY OF RELATIVITY

Background :

> Newton's dynamical laws, Principia (1687).

- point particles and forces
- gravitational force
- light
- absolute space and time,
> Young, Fresnel, Fraunhofer, ...
- interference, diffraction \Rightarrow Waves
- medium : luminiferous aether
> Faraday - Field concept

Maxwell - Electromagnetic Field

Electromagnetic waves of a constant velocity. Maxwell identifies light with E-M wave
> Two clouds on the Horizon

Problem of velocity of earth through aether

Newton's laws are same in all inertial systems i.e. all those systems which are moving in a straight line with constant velocity with respect to each other.

Rules for comparing: Galilean transformations
Maxwell's E.M. Theory in not the same in all systems connected by Galilean transformation. It should therefore be possible to determine earth-aether relative velocity. Experiments always give a null result.

Einstein's resolution

1. Banish aether
2. A thorough revision of the concept of space and time

Simultaneity :

He found that the two considerations
(1) All physical laws have the same form in all inertial frames
(2) The velocity of light is same in all initial frames, which look irreconcilable, can indeed reconciled if space and time notions are brought into line with his `analysis of simultaneity.
> Galilean transformation \Rightarrow Lorentz transformation
> Newton dynamics has to be modified so that is invariant under Lorentz transformation
> Length - Contraction (Fitzgerald - Lorentz); time - dilation (Einstein), mass variation with velocity, ...
> War bond rally in Kansas in 1944. \$6.5m.
> Minkowsk i: (1908) Hereafter space and time by themselves are bound to fade away and only a union of the two will reserve an independent unity.

Translated from Annalen der Physik 18 (1905) page 641

Neglecting magnitudes of the fourth and higher order, we can get

$$
\mathrm{K}_{0}-\mathrm{K}_{1}=\left(\mathrm{L} / \mathrm{V}^{2}\right) \mathrm{v}^{2} / 2
$$

From this equation one immediately concludes:
If a body emits the energy L in the form of radiation, its mass decreases by L / V^{2}. Here it is obviously inessential that the energy taken from the body turns into radiant energy. So we are led to the more general conclusion.

The mass of a body is measure of its energy content. If the energy changes by L, the mass changes in the same sense by $L /\left(9.10^{20}\right)$ if the energy is measured in ergs and the mass in grams.

It is not excluded that it will prove possible to test this theory using bodies whose energy content is variable to a high degree (e.g. radium salts).

If the theory agrees with the facts, then radiation carries inertia between emitting and absorbing bodies.

A.E. to his friend Conrad Habicht, 30 June -22 Sept. 1905

One more consequence of the paper on electrodynamics has also occurred to me. The principle of relativity, in conjunction with Maxwell's equations, requires that mass be a direct measure of the energy contained in a body; light carries mass with it. A noticeable decrease of mass should occur in the case of radium. The argument is amusing and seductive; but for all I know, the Lord might be laughing over it and leading me around by the nose.[5]

1907 : Discovers Principle of Equivalence
1912-13 : Metric tensor description of gravitation
1915 : Nov. 25 Completes his formulation of General Theory of Relativity (G.R.)
Flat space-time (Euclidean)
\downarrow
(Riemannian) Curved space-time gravitation » curvature of space - time
1917 : First paper on Cosmology
1919 : May 29 Eddington total solar eclipse expedition confirms G.R. Becomes a world-wide icon.

1922- .. : Unified field theory

QUANTUM REVOLUTION

> Origins in the Problem of Black Body Radiation
> Kirchhoff : 1869 a universal function of λ and T
> Max Planck succeed: Kirchoff (1889)
> Planck's Oscillators: (18.5.1899)
> Rayleigh - Jean's Law (June 1900, 1905)
> If Planck had known Equipartition theorem of energy $1 / 2 k T$
> Rayleigh -Jeans good for λ large. Wien's Law (1894) good for λ small
> Planck's law 19 Oct. 1900
> Planck gives a formal derivation on 14 Dec. 1900 to German Physical Society
> $E=n h \nu$
> "This was a purely formal assumption and I really did not give it much thought except that no matter what the cost, I must bring out a positive result".
> A.E.'s Light Quantum paper (Nobel Prize for 1921, announced Nov. 1922)
> Motivation: Asymmetrical treatment of matter and radiation in classical physics (i.e. particles vs fields)

Discrete vs Continuum

"The wave theory, operating with continuous spatial functions, has proved to be correct in representing purely optical phenomena and will probably not be replaced another theory. One must, however, keep in mind that the optical observations are concerned with temporal mean values and not with instantaneous values, and it is possible, in spite of the complete experiment verification of the theory of reflection, refraction, diffraction, dispersion and so on that the theory of light which operates with continuous spatial function may lead to contradictions with observations if we apply it to the phenomena of the generation and transformation of light"
> Black body radiation, photoluminescence, photo electric effect.
> Light quantum hypothesis "in the propagation of a light ray emitted from a point source, the energy is not distributed continuously over ever increasing volumes of space, but consists of a finite number of energy quanta localized at points of space that move without dividing, and can be absorbed or generated as complete units".
> Black-Body radiation: Equipartition theorem of Energy
$\Rightarrow u(v, T) d v=\frac{8 \pi v^{2} d v}{c^{3}} k T$
(i) first correct derivation of the so called Rayleigh- Jeans law
(ii) $\int_{o}^{\infty} d v u(v, T)=\infty$
(iii) classical physics fails except for λ large
> Wien's law $u(v, T)=a v^{3} \exp (-h v / T)$

$$
\Rightarrow S-S_{0}=(E / h v) \ln \left(v / v_{0}\right)
$$

Combining with

$$
S=k \ln W
$$

Prob. $\mathrm{W}\left(\mathrm{v}_{0} \rightarrow \mathrm{v}\right)=\left(\mathrm{v} / \mathrm{v}_{0}\right)^{n}, \quad n=(\mathrm{E} / h v)$
For an ideal gas of n particles also
Prob. $\mathrm{W}\left(\mathrm{v}_{0} \rightarrow \mathrm{v}\right)=\left(\mathrm{v} / \mathrm{v}_{0}\right)^{n}$
"Monochromatic radiation ... behaves in thermodynamical theoretical relationship as though it consisted of distinct independent energy quantum of magnitude $h v$ "

Applications

(i) Stokes law: $h v_{1}>h v_{2}$ Ionization of Gases by UV light:

Photoelectric Effect :

1887 : H. Hertz
UV light incident on metals can cause sparks

1899 : J.J. Thomson
The sparks are due to the emission of electrons : e/m
1902 : P. Lenard
> "Not the slightest dependence on the light intensity" (variation by a factor of 1000)
> Photoelectron energy \uparrow incident frequency (qualitative)
1905: A. Einstein
$\mathrm{E}_{\text {max }}=h v-\mathrm{W}$
"The second coming of h " (A.P.)
1915-16 R.A. Millikan
"Einstein's photoelectric equation ... appears in every case to predict exactly the observed results ... yet the semi-corpuscular theory by which Einstein arrived at his equation seems at present wholly untenable"
"the bold, not to say reckless, hypothesis of the e.m. light corpuscle"

PHOTON

1905 : light quantum $E=h v$
1917 : momentum $=h v / c \quad$ (A.E.)
1923 : Compton - Kinematics of an electron - "photon" collision [1926: G.N. Lewis introduced the term "PHOTON"]

1924 : S.N. Bose's derivation of Planck's Law using only the particle picture and application of Bose statistics (sometimes called Bose-Einstein Statistics) to matter.

PHYSICS DEPARTMENT
Dacca University
Dated the $4^{\text {th }}$ June, 1924

Respected Sir,
I have ventured to send you the accompanying article for your perusal and opinion. I am anxious to know what you think of it. You will see that (l have tried to deduce the coefficient $8 \mathrm{pn}^{2} / \mathrm{c}^{3}$ in Pianchi Law independent of the classical electro dynamics) only assuming that the ultimate elementary regions in the Phase space has the content h^{3}. I do not know sufficient German to translate the paper. If you think the paper worth publication, I shall be grateful if you arrange for its publication in Zeitschrift für Physik. Though a complete stranger to you, I do not feel any hesitation in making such a request. Because we are all your pupils though profiting only by your teachings through your writings. I do not know whether you still remember that somebody from Calcutta asked your permission to translate your papers on Relativity in English. You acceded to the requests. The book has since been published. I was the one who translated your paper on Generalised Relativity.

Yours faithfully,
S.N. Bose

Lieber Herr Kollege:

Ich habe ihre Arbeit über--Setzt und der Zeitschrift für Physik zum Druck übergeben. Sie bedentet einen wichtigen Fortschritt und hat mir Schr gut gefallen. Ihre Einwände gegen meine Arbeit finde ich zwar nicht richtig. Denn das Wiensche Ver Schiebungsgesetz setzt die undulations theorie nicht Voraus
und das Bohr-che Korrespondenz
prinzip ist uberhaust nicht
Verwendel Joch dies that
Nichts. Lie haben ala erster
den Faklor quantentheoretisch abgeleitet wenn auch wegen
des Polarisations, Jaklors 12
Nicht ganz streng. Es ist
ein schöner Fortschritt
Met Freundlichen Gruss
Ihr A.Einstein
Sd)
Sitz Berlin Pess Akad. Wiss Berlin p. 261 (1924)

Quantentheorie des einatomigen idealen Gases

Von A. EINSTEIN

Eine von willkürlichen Ansatzen freie Qunatentheorie des einatomigen idealen Gases existiert his heute noch nicht. Diese Lücke soll im folgenden susgefüllt warden auf Grund einer neuen, von Hra.D.Bose erdachten Betrachtungeweise, auf welche dieser Autor eine höchst beachtenswerte Albeitung der PLANCKschen Strahlungsformed gegründet hat¹.

Dez im folgenden imAnschuâ an BOSE einzuschlagende Weg laât sich so charakterisieren. Der Phasenraum cines Elementargebildes (hier eines einstoungen Moleküls) in bezug auf ein gegebenes (driedimensionales) Volumen wird in "Zellen" von der Ausdehnung ${ }^{A}$ eingeteilt, Sind viele Elementargebilde vorhauden, so ist derren fur die Thermodynamik in Betracht kommende (mikroskopische) Verteilung durch die Art und Weise charakterisicrt, wie die Elementargebilde über diese Zellen verteilt sind, Die "Wahrscheinlichkeit" eines markroskopisch definierten Zustandes (im PLANCKschen Sinne) ist gleich der Anzahl der verschicdenen mikroskopischen Zustande, durch welche der makroskopische "Zustand realisiert gedacht warden kann. Die Entropic des makroskopischen Zustandes und damit das staistiche und thermodynamische Verhalten des Systems wird dann durch den BOLTZNANNSCHEN Satz bestimmt.

§1. Die Zellen.

Das Phasenvolum, welches-zu einem gewissen Bereich der Koordinaten. x, y, z und rugehörigen Moments P_{1}, P_{2}, P_{3} eines einatomigen Moleküls gehört, wird durch das Integral.

$$
\begin{equation*}
\Phi=\text { ò } d x d y d z d p_{x} d p_{y} d p_{z} \tag{1}
\end{equation*}
$$

susgedruckt. Ist V das dem Molekul zur Verfügung stehende Volumen, so ist das Phasen volumen aller Zustände, deren Energie $E=1 / 2 m\left(p_{x}{ }^{2}+p_{y}{ }^{2}+p_{z}{ }^{2}\right)$ kleiner ist als ein bestimmter Wert E, gegeben durch

$$
\begin{equation*}
\mathrm{F}=\mathrm{V} 4 \pi / 3(2 \mathrm{mE})^{3 / 2} \tag{la}
\end{equation*}
$$

'Erscheint nachstens in der 'Zeitschr für Physik'
1907 : Quantum theory of specific heat of solids
1909 : Wave-Particle duality
1917 : A and B coefficients of Einstein, Discovers Stimulated emission of light (lasers)
1924 : Bose - Einstein condensation (2001 Nobel Prize to Cornell, Ketterle, Wiemann)
1925-26 : Discovery of Quantum Mechanics Schrodinger Wave Mechanics (A.E. as god father); Heisenberg Matrix Mechanics (A.E.'s inspire)
> 1926 : Foundations of Quantum Mechanics
Oct 1927 : Solvay Conference - Discussion with Bohr
1935 : Einstein - Podolsky - Rosen discovery of nonlocal correlations

प्रो. जयंत नारळीकर

हा प्रश्न अनेकदा विचारला जातो. इतकेच नव्हे तर पृथ्वीवरील वेगवेगळ्या देशांतल्या विविध संस्कृतींमध्ये लोकांनी ह्या प्रश्नाला होकारांती उत्तर ही दिल्याचे दिसून येते. आपल्या पौराणिककथांमध्ये देव, दानव, यक्ष, किन्नर आदींचा उल्लेख असतो. तसेच उल्लेख इतरत्र ही पाहिले की वाटते मानवाला एक जिज़ासाच नव्हे तर आकांक्षा आहे की आपल्याहून श्रेष्ठ योनी पृथ्वीबाहेर पसरलेल्या अंतराळात असाव्यात.

आजचे खगोल विज्ञान ह्या आकांक्षेला खतपाणी पुरवते. पृथ्वी सूर्याच्या ग्रहमालेचा एक ग्रह. आपल्या आकाशगंगेतल्या १००-२०० अब्य तान्यांपैकी सूर्या सारखे अब्जावधी तारे सापडतील. १९९० पासून तान्यांभोवती ग्रहमाला शोधण्याचे प्रयत्न सुरु झाले व त्यांना सफलता मिळू लागली. तेव्हा केवळ संख्येच्या दृष्टीने 'सूर्यासारख्या तान्याभोवती पृथ्वी सारखा ग्रह' असण्याची शक्यता पुष्कळ आहे. इतकेच नव्हे तर जीवशास्त्राच्या दृष्टीने पृथ्वीवरील जीवसृष्टीच्या मुळाशी असणान्या DNA रेणूचे घटकरेणु अंतराळात पसरलेल्या विशाल वायुमेघात सापडत आहेत. हे सर्व पाहता आपल्या आकाशगंगेत आपल्यापेक्षाही प्रगत जीव असण्याची शक्यता नाकारता येणार नाही. पण त्यांच्याशी संपर्क कसा साधायचा? Search for Extra-Terrestrail Intelligence (SETI) प्रकल्पासाठी असे प्रयत्न चालू आहेत. आकाशगंगेत आपल्यापासून १०-२० प्रकाशवर्षे अंतरावरील तान्यांच्या दिशेने रेडिओ संदेश पाठवून तेथून काही उत्तर येते का हे पाहण्याचे प्रयत्न ह्या प्रकल्पाखाली चालू आहेत. तसेच अशा दोन 'उच्चसंस्कृती' परस्परांशी संभाषण चालू ठेवून आहेत का हे पाहण्यासाठी त्यांच्यातर्फे पाठवले जाणारे संदेश मधल्या मध्ये ‘टप' करण्याचे प्रयत्न पण चालू आहेत. २१ सेंटीमीटरची लांबी असलेल्या लहरी प्रामुख्याने ‘सेटी’साठी वापरतात. ह्या लहरी शोषणापासून बन्यापैकी मुक्त असून आकाशगंगेत लांबचे पल्डे गाठू शकतात. त्यांच्यामाध्यमातून पृथ्वी भोवतालच्या वायुमंडलात गोंगाटही कमीच आहे. ह्या दोन फायद्यांव्यतिरिक्त, २१ सें.मी. चा आणखी एक गुण म्हणजे तिचा हायड्रोजनच्या अणूच्या रचनेशी मूलभूत संबंध आहे. हायड्रोजन अणूच्या रचनेत स्वयंप्रेरित बदल घडवून त्यातून ह्या लांबीच्या लहरी निघतात. हायड्रोजन हा आकाशगंगेचा सर्वव्यापी घटक असल्याने ह्या लहरी आकाशगंगेत सगळीकडे पसरलेल्या आहेत व म्हणून दूरवरच्या जीवांना (अर्थात् प्रगत अवस्थेतील) त्यांचे गुणधर्म चांगले परिचित असणार. म्हणूनच अशा लहरींच्या माध्यमातून संदेश पाठवल्यास ते ग्रहण करायची ‘सोय’ त्यांच्याकडे असेल.

हे संदेश पाठवण्यासाठी विशाल रेडिओ ऑण्टेना (मोठ्या डिशच्या रुपात) उभारावे लागतात. रेडिओ खगोल विज्ञानासाठी अशा दुर्बिणी अस्तित्वात असल्याने त्यांचाच वापर केला जातो. सेटी साठी संदेश पाठवणे तसेच संदेश ग्रहण करणे दोन्हीची गरज असते. डिशवर येणान्या ‘गोंगाटात’ खराखुरा माहितीचा सिग्गल आहे का नाहीं हे पहायला मिलियन चॅनल ऊनलायझर सारखे उपकरण संगणकाला जोडून वापरतात. दशलक्ष चॅनल पैकी नेमक्या कुठल्या चॅनलवर संदेश आहे. (-असला तर !) हे त्या उपकरणातून कळते. शिवाय हौशी सेटी प्रकल्पात भाग घेणारे पुष्कळ आहेत. त्यांच्याकडे दुर्बिणीतून आलेले रेकॉर्डिंग पाठवले जाते व त्यांना पुरवलेल्या सॉफ्टवेअरच्या मदतीने ते गोंगाटातून संदेश शोधतात.

अर्थात आपण पाठवलेला संदेश आणि ‘त्यांनी’ पाठवलेला संदेश इंग्रजीत किंवा पृथ्वीवरच्या इतर कुठल्या भाषेत असायची गरज नाही. हा संदेश विज्ञानाची (गणित + भौतिकशास्त्र + जीवशास्त्र + खगोल निरीक्षणे) सांकेतिक माहिती देणारा असावा. तो वाचून पाठवणारा अमुक एका स्तरापर्यंत विज्ञानाची प्रगती करु शकला आहे हे कळावे अशी अपेक्षा ! अजून असा संदेश बाहेरुन मिळालेला नाही. पृथ्वीकडून मात्र संभाव्य तान्यांच्या दिशेने असे संदेश पाठवण्याचे काम गेली तीस वर्षे चालू आहे. सादाला प्रतिसाद मिळाला तर ती मानवी इतिहासातली सर्वात महत्त्वाची घटना ठरेल.

परंतु आपल्याहूनही प्रगत अशा जीवसृष्टीला शोधताना आपल्याला एका वेगळया शोधामागे देखील प्रगती करता येईल. हा शोध वेगळया दिशेने, सूक्ष्म जीवांना शोधण्याचा आहे. त्यामागची कल्पना अशी.

सुमारे तीस वर्षांपूर्वी ब्रिटनमधील दोन खगोलशास्त्ज, फ्रेड हॉएल आणि चंद्र विक्रमसिंधे यांनी अशी कल्पना मांडली की पृथ्वीवर जीवसृष्टीची निर्मिती झाली त्या मागे ओपॅरिन व हॉल्डेन ह्या शास्त्जांचा तर्क बरोबर नाही. ओपैरिन-हॉल्डेन तर्काप्रमाणे

पृथ्वीची निर्मिती झाल्यावर सुरवातीच्या काळात पृथ्वीवरील वातावरण आजच्या पेक्षा वेगळे आणि पुष्कळ खळबळ जनक होते. त्या वेळी अमोनिया, मीथेन आणि पाण्याची वाफ यांचा विजांच्या उपस्थितीत संयोग होऊन अमीनो अम्ल तयार झाले. त्यातून पुढे डी.एन.ए व पुढे पेशी अशा क्रमाने जीवसृष्टीची सुरुवात झाली. थोडक्यात, ओपॅरॅन-हॉल्डेन मताप्रमाणे पृथ्वीवरची जीवसृष्टी सर्वस्वी पृथ्वीवर तयार झाली. ह्या तर्कांचे खंडन करताना हॉएल- विक्रमसिंघे यानी असे मत मांडले की पृथ्वीवर जीवसृष्टी चा विकास झाला तो मुळात तेथे बाहेरेन आलेल्या जीवाणू - विषाणू (बॅक्टेरिया-व्हायरस) तून.

हे सुक्ष्मजीव पृथ्वीवर आले कुठून ? हॉएल-विक्रमसिंघे यांचा असा दावा आहे की अंतराळात तान्यांदरम्यान प्रदेशात ज्या प्रमाणे गॅस व धूलिकण आहेत त्याच प्रमाणे सूक्ष्म जीवाणू-विषाणू पण आहेत. दुरुन येणारे धूमकेतू त्यापैकी काहीना आपल्या भिजलेल्या वस्तूतून आणतात. सूर्याजवळ बाष्पीभवन होऊन शेपूट तयार झाली की हे धूमकेतूतले जीवाणू त्या शेपटीत पसरतात. शेपूट कधीकधी पृथ्वीच्या वायुमंडलाला घासून जाते. अशावेळी हे जीवाणू वायुमंडलात घुसतात व पृथ्वीच्या गुरुत्वाकर्षणामुळे पृथ्वीतलावर उतरतात.

ह्या तर्काला प्रस्थापित जीवशास्त्रांनी कडाडून विरोध केला किंवा त्याची थट्टा केली. कारण त्यांच्या मते पृथ्वीच्या वायुमंडलाच्या संरक्षणाबाहेर विश्वात क्ष किरणे, गामा किरणे, अल्ट्राव्हायोलेट प्रकाश आदींच्या मान्यात जीवाणू टिकून राहणे शक्य नाहीं. तेव्हा दुरुन असे जीवाणू इकडे सुखरुप येणे शक्यच नाहीं ! ह्या शिवाय एक असाही पूर्वग्रह वैज्ञानिकात सापडतो - जो कोपर्निकस नंतर ही दिसतो की आपली पृथ्वी विश्वात विशेष स्थान ठेवून आहे. कदाचित् जीवसृष्टीपण पृथ्वीशिवाय इतरत्र नसेलच.

परंतु गेल्या काही वर्षात प्रयोगांती दिसून आले आहे की अशा तीव्र किरणांचा मारा केला तरी जीवाणू आपली अंतर्गत रचना बदलून प्रतिकार शक्ती वाढवतात आणि जगू शकतात. तेव्हा पूर्वग्रह न बाळगता आपण वरील सिद्धांत प्रयोगाने तपासू शकतो का ?

ह्या साठी काही वैज्ञानिकांच्या वतीने मी इंडियन स्पेसरिसर्च ऑर्गनायझेशन (इस्रो) कडे अर्ज केला की त्यानी अशा प्रयोगासाठी पैसा आणि ज्ञान पुरवावे. अंतराळात ३०-४० कि.मी. उंचीवर जाणारे फुगे सोडून त्यांना बांधलेल्या उपकरणात तेथील हवेचे नमूने गोळा करुन आणायचे काम इस्त्रोच्या तंत्रज्ञानी यशस्वीरीत्या केले होते - फक्त अशा नमुन्यांत धुळीचे कण, रेणू आदींची उपस्थिती शोधण्याचे काम त्या प्रयोगांत केले गेले होते. आम्हाला पहायचे होते की इतक्या उंचीवर आपल्याला जीवाणू सापडताहेत का. इस्र्रोचे त्यावेळेचे संचालक कस्त्तूरीरंगन यांनी उत्साहाने ह्यासाठी इस्त्रोचे पाठबळ आमच्या मागे उभे केले. टाटा इंस्टिट्यूट ऑफ फंडामेंटल रिसर्च च्या हैदराबाद येथील बलून फॅसिलिटी चा वापर करायचे आम्ही ठरवले व २००१ साली जानेवारी महिन्यात आम्ही पहिला प्रयोग यशस्वी
 आल्या. पूर्व नियोजित उंचीच्या पट्टयात अमुक एक नळी उघडून क्रायोपंपाने त्यांत वायुमंडलाची हवा भरून नळी बंद करायची त्यांत व्यवस्था होती. टेलीकमांड द्वारे हे सर्व जमिनीवरुन करता येते. त्या करिता आम्ही चार उंचीचे पट्टे निवडले - सुमारे २५, ३०, ३५ आणि ४१ कि. मी. उंचीचे. नंतर पॅराशूट द्वारे फुग्यापासून उपकरण सोडवून खाली उतरवले. एकंदर प्रयोगाला काही तास लागले.

आम्ही गोळा केलेले नमुने हैदराबाद येथील सेंटर फॉर सेल्युलर ऑण्ड मॉलेक्यूलर बायॉलॉजी व कार्डिफ येथे सेंटर फॉर ऊस्ट्रोबायॉलॉजी येथे तपासणी साठी पाठवले. गोळा केलेल्या हवेत जीवाणू, विषाणू आहेत का हे पहायचा उद्देश होता. कार्डिफ येथे विक्रमसिंंघे यांच्या मार्गदर्शनाखाली तेथील जीवशास्त्रजानी ज्या तपासण्या केल्या त्यांत त्यांना जिवंत पेशी आढळल्या. नळ्यांना चिकटलेला भाग खरडून काढल्यावर त्यांत शेफिल्ड येथील प्रयोगशाळेला जीवाणू (बॅक्टेरिया) सापडले. हैदराबाद च्या प्रयोग शाळेला पेशी सापडल्या नाहींत पण खरडलेल्या भागात जीवाणू सापडलेत.

आता प्रश्न असा येतो की ४१ कि.मी. उंचीवर सापडलेले जीवाणू किंवा पेशी तेथे आले कसे ? पृथ्वीवरुन इतक्या उंचीवर पोचायला ज्वालामुखीचे उद्रेक किंवा वातावरणातील वादळे सुद्धा अपुरी पडतात. ज्वालामुखीचे कण जास्तित जास्त ३० कि.मी. पर्यंत पोचल्याचे माहीत आहे. तेव्हा आम्हाला सापडलेले ‘सूक्ष्मजीव’ खालून न येता वरुन आले असे गृहित धरायला जागा आहे. त्यातून हॉएल-विक्रमसिंघे यांच्या तर्काला पुष्टी मिळते. पण हा तर्क बराच खळबळजनक असल्याने त्याच्या तपासणी साठी अजून नव्या प्रयोगांची गरज आहे. २००५ साली आम्ही फुगा वर पाठवून नमुने गोळा केले. त्यांची तपासणी चालू आहे. योग्य वेळी त्यांचे निष्कर्ष जाहीर होतील.

Drake's equation:

$N=R * f_{s}{ }^{*} f_{p}{ }^{*} n_{e}{ }^{*} f_{1} f_{i} f_{i} f_{c} * L$
$\mathbf{R}=$ Average rate of star formation (stars/year)
$\mathbf{f}_{\mathrm{s}}=$ Fraction of stars that are 'good' suns
$f_{p}=$ Fraction of good stars with planetary systems
$\mathrm{n}_{\mathrm{e}}=$ Number planets per stars within ecoshell
$f_{1}=$ Fraction of n_{e} on which life develop
$\mathbf{f}_{\mathbf{i}}=$ Fraction of living species that develop intelligence
$\mathbf{f}_{e}=$ Fraction of intelligent species reaching an electromagnetic communicative phase
$\mathbf{L}=$ Lifetime in communicative phase (years)
The answer depends on estimates for the various factors made by individuals and varies between 1 and several billions! A middle opinion centres around a million or so.

N : L
The Extra-Terrestrial Intelligences;
How can we search for them?
By sending space-ships?

※ *

Einstein on light : from waves to quanta and back

Urjit A. Yajnik
Physics Department, I.I.T. Bombay, Mumbai 400076.

One of Einstein's famous 1905 papers is often referred to as his "photoelectric effect paper". Indeed the Nobel Prize he received was in 1921, for the same photoelectric formula. The physical arguments underlying the formula lay the foundation for a quantum theory of electromagnetic waves. Newton had suggested that light consisted of particles, however later discoveries had firmly established light as waves. Under the circumstances photons was a daring hypothesis.

With later developments culminating in the formulation of Quantum Electronics (more commonly known as laser technology), the subject of Nobel Prize 2005, we seem to have come a full circle, from particles to waves, back to particles. However there are profound differences between Newtonian concept of particles and the concept of photons proposed by Planck and Einstein. This subtle difference was brought out in S N Bose's derivation of Planck' raditaion formula.

The discovery of Planck's formula has an interesting history starting with Kirchoff's proposal and Planck's rather "desperate" hypothesis. In turn, Einstein's interest in the formula is kindled not by a desire to prove the photoelectric formula but as a point of principle regarding Statistical Mechanics. Einstein disagreed with the method followed by Boltzmann and Planck and established that "common sense" concepts suffice to obtain Planck formula however only if we admit the notion of light quanta applicable to more general setting than required by Planck formula. The photoelectric formula was proposed by way of verifying this hypothesis. The formula did not get experimentally verified until 1912. And nobody except Einstein himself seems to have believed in the photons until Bose's paper provided the simple but profoundly different counting procedure required for the states of electromagnetism we call photons.

Bose's derivation proves that while photons are discrete, they still are not like ordinary particles. Quanta as distinct from particles and as a novel physical concept never previously encountered has baffled a whole century of thinkers and caused people to suspect the completeness of the new science of Quantum Mechanics. With the arrival of the formulation of Glauber and Sudarshan, and as first proved by Sudarshan, there is complete mathematical equivalence for the description of electromagnetism between of the photon description according to quantum principles and the classical description as waves.

What was Einstein's disagreement with Boltzmann and Planck ? Is it justified in retrospect ? In what sense did this difference strengthen Einstein's bold initiative ? Why did one have to wait till 1924 for Bose to set the new initiative in right perspective ? Are we in possession of a logically complete description after the arrival of Quantum Electronics ? These are some of the questions which may be interest for further study.

Theory of Relativity - I Time-keeping in Special Relativity

Jayant V. Narlikar
Emeritus Professor, Inter-University Centre for Astronomy and Astrophysics
Post Bag 4, Ganeshkhind, Pune 411007.

Abstract

An elementary discussion is given of how time measurements differ for different inertial observers according to Einstein's special theory of relativity. A comparison is made with the Newtonian (pre-relativity) method of time measurement.

Introduction

In 1905 Einstein published three papers, each of which turned out to be a trend-setter. One was his discussion of the phenomenon of Brownian motion, another was on the photoelectric effect and the third introduced the special theory of relativity. This simple discussion presents a highlight of the special relativity, one which baffled and confused most people, including physicists, but which is factually borne out by experiments.

The principle of relativity of motion implies that two inertial observers 'see' the same basic physical laws. Here an inertial observer is one on whom no force acts. By Newton's first law of motion such an observer has uniform velocity. Thus two inertial observers will in general have a uniform relative velocity. And two such observers should find the same mathematical structure for all basic physical laws. In other words, the relative velocity plays no role in the fundamental formulation of physical laws.

So consider two inertial observers A and \mathbf{A}^{\prime} with \mathbf{A}^{\prime} having a uniform velocity \mathbf{v} relative to A. Both conduct electromagnetic experiments in their labs, and discover (or, rather, rediscover !) Maxwell's equations. Suppose A writes the Maxwell equations in vacuum as

$$
\begin{equation*}
\nabla . \boldsymbol{B}=0, \quad \nabla . \boldsymbol{E}=0, \quad \nabla \times B-\frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t}=0, \quad \nabla \times \boldsymbol{E}+\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}=0 \tag{1}
\end{equation*}
$$

Here \mathbf{E} is the electric field vector and \mathbf{B} the magnetic field vector while \mathbf{c} is a fundamental constant. (Note that in vacuum $B \equiv H, E \equiv D$ in the usual notation.) Given this and the principle of relativity, we can assert that \mathbf{A}^{\prime} will find exactly the same set of equations connecting his measured quantities E^{\prime} and B^{\prime}.

So far this seems reasonable. One could argue that there exists a linear transformation between (E, B) and ($\mathrm{E}^{\prime}, \mathrm{B}^{\prime}$) that preserves the form (1). However, let us use (1) for a little manipulation. Taking curl of the third equation of (1) and using the first and fourth ones, we get

$$
\begin{aligned}
0 \equiv \nabla \times\left[\nabla \times B-\frac{1}{c} \frac{\partial E}{\partial t}\right] & \equiv \nabla(\nabla \bullet \mathrm{B})-\nabla^{2} \mathrm{~B}-\frac{1}{c} \nabla \times \frac{\partial E}{\partial t} \\
& \equiv-\nabla^{2} \mathrm{~B}-\frac{1}{c} \bullet \frac{\partial}{\partial t}(\nabla \times \mathrm{E}) \\
\equiv & -\nabla^{2} \mathrm{~B}+\frac{1}{c^{2}} \frac{\partial^{2} \mathrm{~B}}{\partial t^{2}}
\end{aligned}
$$

(2)

Likewise we also get

$$
\begin{equation*}
\nabla^{2} \mathrm{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathrm{E}}{\partial t^{2}}=0 \tag{3}
\end{equation*}
$$

Both the equations (2) and (3) are wave equations and they tell us that \mathbf{E} as well as B propagate with a fundamental speed c. What is this constant c ? Experiments identify it with the speed of light in vacuum. Thus, working in their respective labs both A and \mathbf{A}^{\prime} will conclude that any light wave they see must travel with speed c.

This conclusion drawn from a reasonable looking basic principle appears counterintuitive to anyone accustomed to thinking in the Newtonian way. For, if A sees an object C coming with velocity \mathbf{u}, then \mathbf{A}^{\prime} should find its velocity as $\mathbf{u} \mathbf{- v}$. And this result applied to a light wave would tell us that A and \mathbf{A}^{\prime} would find different values for their measurements of the speed of light.

So, we have two possibilities open to us. Either we carry on with Maxwell's equations as they are and Newton-based system of spacetime measurements or we revise Maxwell's equations so that the above discrepancy is removed. Einstein opted for the first recourse and was led to the special theory of relativity.

Transformations between inertial frames

Briefly, we may denote the two possibilities above by the Galilean and Lorentz transformations between the spacetime coordinates of an event masured by A and \mathbf{A}^{\prime}. Let us consider the Galilean transformation first. It is given by

$$
\begin{equation*}
\mathrm{X}^{\prime}=\mathrm{X}-v t, \quad t^{\prime}=t \tag{4}
\end{equation*}
$$

Here we have no change of time coordinates, while the space coordinate suffers a translational change. This transformation gives expression to the Newtonian concepts of absolute space and absolute time. Note that, although the spatial coordinates change, the spatial separations between two events occuring at the same time do not. Also, accelerations do not change.

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{X}^{\prime}}{d t^{\prime 2}}=\frac{\mathrm{d}^{2} \mathrm{X}}{d t^{2}} \tag{5}
\end{equation*}
$$

so that Newton's second law of motion remains unchanged. But, as we saw earlier, Maxwell's equations cannot retain the same form under the Galilean transformation.

The second alternative of Lorentz transformation looks, at first sight, very messy. Corresponding to (4) we have

$$
\begin{align*}
& \left(\mathrm{x}^{\prime} \cdot v\right)=\gamma(\mathrm{x}-v t) \cdot v \\
& \mathrm{x}^{\prime} \times \mathrm{v}=\mathrm{x} \times \mathrm{v}, \\
& t^{\prime}=\gamma\left(t-\frac{\mathrm{v} \cdot \mathrm{x}}{c^{2}}\right), \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma=\frac{1}{\sqrt{1-\frac{v 2}{c^{2}}}} \tag{7}
\end{equation*}
$$

This transformation leaves the components of space coordinates normal to v unchanged, but alters the longitudinal spatial component (parallel to v) and also the time coordinate. Because of the factor y, the displacement in space (or time) of two events at the same time (or space) is not the same, but is multiplied by the factor. Note, however, that a little algebra applied to the equations (6) will lead to the result

$$
\begin{equation*}
c^{2} t^{2}-x^{\prime 2} \equiv c^{2} t^{2}-x^{2} \tag{8}
\end{equation*}
$$

Thus if a light wave propagated along $|\mathrm{x}|=c t$ as seen by A , it will be seen by A^{\prime} as propagating along $\left|\mathrm{x}^{\prime}\right|=c t^{\prime}$, i.e., with the same speed c.

A practical example

In case the above discussion appears too pedantic here is a simple example, which I first came across in a public lecture given by Hermann Bondi.

We consider two observers A and \mathbf{A}^{\prime} separating out with a uniform speed v. We count times t, t^{\prime} as measured by A and \mathbf{A}^{\prime} from the instant they were together. Thus we have $t=t^{\prime}=0$ at that instant. The tracks of A and \mathbf{A}^{\prime} in space-time diagram are shown in the Figure 1.

0
Figure 1: The tracks of observers A and \mathbf{A}^{\prime} are shown in the spacetime diagram as diverging from point 0 . A light signal sent by the observer A (by his watch) at time t_{1} is received by A^{\prime} (by his watch) at time t_{0}^{\prime}. Refer to the text for details.

To have a practical measurement of each other's time coordinates, A and \mathbf{A}^{\prime} send out light signals towards each other. Suppose A sends a signal at time $t_{1}>0$ by his watch. When \mathbf{A}^{\prime} receives it, at his measured time $t^{\prime}{ }_{0}$, say, he sends back a reply light signal immediately, reaching A at his recorded time t_{2}. However, A estimates from his timings that $A^{\prime} s$ would have received his signal at

$$
\begin{equation*}
t_{\mathrm{o}}=\frac{1}{2}\left(t_{1}+t_{2}\right) \tag{9}
\end{equation*}
$$

as measured by his (A's) watch. Let us assume that

$$
\begin{equation*}
t^{\prime}=\lambda t_{o} \tag{10}
\end{equation*}
$$

In the Newtonian (Galilean) system we would expect $\lambda=1$.
However, in the special relativistic system, the speed of light is c for both the signals sent out by A and \mathbf{A}^{\prime}. So we have the distance of \mathbf{A}^{\prime} from A at the time to (or t_{o}^{\prime} as measured by \mathbf{A}^{\prime}) as d, where

$$
\begin{equation*}
2 d=c\left(t_{2}-t_{1}\right) \tag{11}
\end{equation*}
$$

Now A estimates that travelling with velocity v away from him for a time, A^{\prime} would have moved to a distance.

$$
\begin{equation*}
d=v t_{o}=\frac{\left(t_{1}+t_{2}\right)}{2} \times v \tag{12}
\end{equation*}
$$

From (11) and (12) therefore we get
$\frac{v}{c}=\frac{t_{2}-t_{1}}{t_{1}+t_{2}}$.
So far we have not used the principle of relativity fully. We do so now. Consider the light ray sent by A at t_{1} which reached \mathbf{A}^{\prime} at t_{0}^{\prime}. Suppose we write,

$$
\begin{equation*}
t_{o}^{\prime}=\alpha t_{1} . \tag{14}
\end{equation*}
$$

By similarity of geometrical shapes and the reciprocity between the observers, a typical signal sent out by A at any instant t_{1} would reach A^{\prime} at time αt_{1} as measured by the watch of \mathbf{A}^{\prime}, with the same α, and vice versa. That is, the signal sent by \mathbf{A}^{\prime} at t_{o}^{\prime} would reach A at time αt_{o}^{\prime} as measured by A . We thus have
$t_{2}=\alpha t_{o}^{\prime}=\alpha^{2} t_{1}$.
From (13) and (15) we therefore get

$$
\begin{equation*}
\alpha=\left(\frac{1+\frac{v}{c}}{1-\frac{v}{c}}\right)^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

How do we compare the time measurements by A and A^{\prime} ? Suppose A has stationed another colleague B at rest relative to him but located at the point where A^{\prime} will be when the signal from A reaches him, that is, at time by the watches A and B (which are supposed to be synchronized). So as A^{\prime} passes him, B will record that the watch carried by A^{\prime} showed the time t_{o}^{\prime}. How does to compare with his own time t_{o} ? Using (9) and (15) we get

$$
\begin{equation*}
t_{0}=\frac{1}{2}\left(\alpha^{2}+1\right) t_{1}, t_{0}^{\prime}=\alpha t_{1} \Rightarrow \frac{t_{0}^{\prime}}{t_{0}}=\frac{2 \alpha}{\alpha^{2}+1} \tag{17}
\end{equation*}
$$

Using (16) for α we get for λ as defined in (10),

$$
\begin{equation*}
\lambda \equiv \frac{t_{0}^{\prime}}{t_{0}}=\sqrt{1-\frac{v^{2}}{c^{2}}}=\gamma^{-1} \tag{18}
\end{equation*}
$$

Thus $\lambda \neq 1$ as expected by the Galilean transformation. Rather we have $\lambda<1$. To B it would appear that the watch carried by A^{\prime} as he moves past is running slow.

Let us recall the reciprocity of the two observers. In fact if we interchanged the roles of A and A^{\prime} and let A^{\prime} bounce a light signal off A, his colleague B would come to the conclusion that the watch carried by A is going slow !

Conclusion

There was considerable discussion in the early days of relativity, whether time dilatation or slowing down of time implied a logical contradiction. 'If the watch of A^{\prime} goes slower than the watch of A by factor λ and vice versa, surely the two conclusions cannot both be right. So special relativity must be wrong !" This was the argument made by the opponents of special relativity.

This conclusion is, however, logically erroneous. For, in the first experiment the slowness of the watch of A^{\prime} was detected by two observers A and B at rest relative to each other and located at different points of the trajectory followed by A^{\prime}. In the second experiment A^{\prime} and B^{\prime} together measured and compared the times kept by their watches with the watch of A. So the two experiments were not the same and there was no contradiction between their differing conclusions. In fact the result underscores the symmetry or reciprocity of any two inertial observers.

The decay of the μ - meson (now commonly known as muon), a particle present in cosmic rays, established that the result of time dilatation is factually correct. Typically, a muon in its own frame of reference decays with a half life of $\sim 1.5 \times 10^{-6}$ second. Cosmic rays take longer than this to travel to the Earth.In fact if we compare the number of muons that actually reach the sea level, with the number of particles expected to survive, we find that there are far too many muons reaching the sea level. This phenomenon is explained by the relation (18). In the rest frame of the muon, the time runs slower compared to the Earth-bound observer's frame, with $\lambda \approx 1 / 9$. This makes it possible for the muons to have survived.

Theory of Relativity - II Faster-than-light Motion

Jayant V. Narlikar
Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Pune 411007

Abstract

This talk describes the notion of tachyons in special theory of relativity. It argues that despite the limit placed on the speed of material particles by the theory of relativity, it is possible to imagine a class of particles which a/ways travel faster than light. Simple dynamical concepts like energy and momentum are defined for such particles and causality problems arising from their presence are discussed. A causality paradox is presented at the end.

Introduction

Let me begin with a limerick by Reginald Buller that became quite well known in the early days of relativity; it was first published in the British magazine Punch on December 19, 1923 :

There was a young lady named Miss Bright.
Whose speed was far faster than light.
She set out one day
In a relative way
And returned on the previous night
The somewhat strange future in store for Miss Bright was speculated upon because the special theory of relativity appeared to place a speed limit on the speed with which any material object or a physical interaction, or indeed information per se can travel. The limerick voices the questions that many people, including physicists asked when they were confronted with the bewildering rules about space-time transformations between moving observers.

In particular we may phrase those questions as follows :

Does special relativity forbid faster-than-light motion?
Does such a motion lead to violation of causality ?
Could we imagine a universe in which some particles travelling faster than light do exist?
In this lecture I will try to answer these questions within the framework of the special theory of relativity. These basic ideas were first discussed by George Sudarshan and his colleagues in 1962.

Three kinds of particles

Indeed, three kinds of trajectories can be identified within the framework of special relativity, given the key role that the speed of light c plays in it. I will use the time coordinate as t and the space coordinates as the triplet $r=(x, y, z)$.
(I) Light travels along null trajectories. This means that a particle travelling with
uniform speed equal to the speed of light, from the space-time origin will follow the path

$$
|r|^{2}-c^{2} t^{2}=0
$$

I) Light travel along null trajectories

This is a typical generator of a hypercone with vertex at the origin. This cone is called the light cone. The light cone can extend into the future (the future light cone) as well as into the past (the past light cone).
(II) Material particles travel along time-like trajectories. A typical path for such a particle will satisfy the inequality

$$
|r|^{2}-c^{2} t^{2}<0
$$

II) Material particles travel along time-like trajectories.

In other words, trajectories of material particles always lie inside the light cone. This is the quantitative statement of the fact that no material particle can travel with speed equal to or more than the speed of light.
(III) Faster than light motion, if it exists, would be along space-like trajectories. In our notation this will satisfy the inequality

$$
|r|^{2}-c^{2} t^{2}>0
$$

(III) Faster than light motion would be along space-like trajectories.

which means that these trajectories will lie outside the light cone.
We may call Type (I) particles luxons and their examples are the photon, and the neutrino, assuming that it is not massive. The Type (II) particles are named tardyons or bradyons and their example is any material particle with mass, like an electron, a piece of chalk or an elephant ... The Type (III) particles are called tachyons. As yet no particle in this class has been found. So our first question can be rephrased: Can tachyons be considered physically realistic? We begin our reply by familiarising ourselves with the concepts of energy and momentum of such particles.

The concepts of mass and energy

For a tardyon moving with velocity \mathbf{v} (with magnitude v), the 'moving' mass is given by
$m(v)=m_{0} \gamma$,
where m_{0} is called the rest mass of the particles and the factor γ is given by the velocity dependent expression
$\gamma=\left[1-v^{2} / c^{2}\right]^{-1 / 2}$
For such particles the energy and momentum are defined by
$E=m(v) c^{2}, \mathbf{P}=m(v) \mathbf{v}$
Therefore, we have the simple relation between the energy and momentum

$$
E^{2}-|P|^{2} c^{2}=[m(v)]^{2}\left\{c^{2}-v^{2}\right\} c^{2}=m_{0}^{2} c 4
$$

Why is the light-speed an unreachable barrier for tardyons ? Now we can see the reason. For, as the magnitude of the velocity, v tends to c, the energy and momentum of the tardyon tends to infinity. In short, infinite force is needed to take $|P|$ to infinity. So there is a practical physical reason why a tardyon cannot attain the speed of light.

For a luxon, the speed is always c. The relations for a tardyon

$$
E=m[v] c^{2}, P=m(v)
$$

now change to

$$
E=|P| c \text { for }|v|=c
$$

So the relation between energy and momentum changes to

$$
E^{2}-|\mathbf{P}|^{2} c^{2} \equiv m^{2}{ }_{0} c^{4}=0
$$

This seems to suggest that the rest mass of a luxon is zero. However, such a statement, often made in literature is technically wrong. For, to be able to define a rest mass for a luxon, one must bring it to rest : and a luxon having always the speed of light, can never come to rest. So the above statement describes a limiting conditions that is never attained.

Consider now the tachyons for whom $v=|\mathbf{v}|>c$. So $m(v)$ is imaginary if m_{0} were real. But again, for a tachyon 'rest mass' has no meaning for it always travels faster than light ! However, we can still let algebra guide us! Let $m_{0}=i M_{0}$. Then we have

$$
E=M(v) c^{2}, \mathbf{P}=M(v) \mathbf{v}
$$

where we have redefined mass of such a particle by

$$
M(v)=M_{0}\left[v^{2} / c^{2}-1\right]^{-1 / 2}
$$

Notice that this relation is algebraically the same as for tardyons. The only difference is that because we now have $v>c$, we have redefined the mass. The mass m_{0} in terms of our original definition was imaginary; but in terms of the new definition, the parameter M_{0} is real. It is called the meta-mass of the tachyon.

The new expression for energy decreases as the velocity v increases. Thus a tachyon loses energy as it moves faster and gains it as it slows down! If it were to slow down to the speed of light, E would be infinite. Thus we have a physical reason why a tachyon can never slow down to attain the speed of light. So in principle, the special theory of relativity allows the three classes of particles to exist but with no interchange amongst them.

We also notice that for a tachyon the magnitude of the momentum multiplied by c exceeds the energy. This is the reverse of the rule for the momentum of the tardyon. Further, since the trajectory of a tachyon lies outside the light cone of its source (the origin in our example), it is possible for it to arrive at the receiver before it was emitted. In such a case the energy of the tachyon as defined above can be negative. Thus we imagine the energy to be
decreasing from very large positive values for a tachyonic speed increasing from a little over c to infinite, and then turning negative as the tachyon moves into the past. As its speed into the past decreases from infinity to c, its energy remains negative but increases in magnitude from zero to infinity. Does a tachyon trajectory going into the past, affect adversely the principle of causality ? We shall address this question next.

Exchange of energy through tachyons

Imagine first, a physical interaction between two material particles (tardyons) in which a tacyhyon is exchanged. Suppose we have an inertial frame of reference in which the tachyon travels with infinite speed. Such a tachyon will have zero energy and so will not affect the energies of the source particle or the receiver particle. But if the tachyon were travelling into the past, what happens ? The source particle gains energy and the receiver particle loses it. This is because the tachyon is carrying negative energy. To deal with such scenarios, one has the so-called reinterpretation principle :

Reinterpretation Principle : A negative energy tachyon moving backward in time is equivalent to a postive energy tachyon moving forward in time.

Thus if the tachyon trajectory connects two points, A on the world line of a material particle a, and B on the world line of a material particle b, and if in a given inertial frame the time of A is later than the time of B, we say that the emitter is at B and the receiver is at A. These roles will be interchanged in another inertial frame in which the time coordinate of the world point B is later than that of the world point A. In other words, the effective exchange of energy always proceeds in the forward time direction. And since information transfer is also linked with energy transfer, we can state that there is no breakdown of causality with the use of the reinterpretation principle.

Can tachyons be relevant to physical rality ? Just as photons (which are luxons) act as exchange agents of energy between electrons, and pions (which are bradyons) are exchanged in nuclear processes, so are tachyons in principle exchangable in physical processes. So far no example of this has been found but tachyonic modes have been proposed for certain high energy particle interactions. Regardless of theory, tachyons should be empirically looked for in high energy cosmic rays.

Back to Miss Bright

Let us look at the travel of Miss Bright of the limerick. Consider two inertial observers O_{1} and O_{2} using respectively, reference frames \sum_{1} and \sum_{2}, linked with the Lorentz transformation :

$$
x_{2}=\gamma \times\left[x_{1}-v t_{1}\right], t_{2}=\gamma \times\left[t_{1}-v x_{1} / c^{2}\right] \text {, }
$$

where the factor γ is related to the relative velocity between the two frames, v , by the relation mentioned earlier. Now suppose that Miss Bright follows a trajectory in frame $\sum_{\text {, given }}$ by
$x_{1}-u t_{1}=0$.
Here we can say that Miss Bright left the origin at $t_{1}=0$ and was at $x_{1}=u T_{1}$ at $t_{1}=$ T_{1}. Call this the destination point for Miss Bright. Thus the observer O_{1} sees her going forward
in time from the origin to the destination. However, the observer O_{2} at rest in Σ_{2}, will discover that Miss Bright reached that point at time.

$$
t_{2}=\gamma \times\left[T_{1}-v x_{1} / c^{2}\right]=\gamma \times T_{1} \times\left[1-v u / c^{2}\right]<0
$$

provided, Miss Bright was travelling with a velocity $u>c^{2} / v>c$. In other words, to the second inertial observer, Miss bright appears to arrive at the destination point before she started from the origin.

This demonstrates the fact that time ordering is not absolute so far as tachyonic events are concerned. Thus in the above example the first observer sees Miss Bright leave the origin and arrive at the destination point later than her start, whereas the second observer sees her arrive at the destination earlier than when she started. The second observer can use the reinterpretation principle to argue that Miss Bright travelled from the destination point towards the origin! In this way, any onflict with causality can be avoided.

A paradox involving tachyons

Nevertheless, as the above example shows, there can be odd effects wherever tachyons are mediating events. David Atkinson has come up with a nice space-time paradox involving tachyonic messaging which he has worded in terms of the Hindu mythology. I end this talk with that paradox.

A Tachyonic Chronoclasm

In Mount Meru airport there are two parallel travelators, a gigaparsec apart, travelling at the same speed in the same direction. One fine kalpa, Lakshmi, who had just bought a tachyonic transceiver at the airport shop, was standing on travelator number one, while Vishnu, admiring holographs of his future avatars, lounged by the art print counter. About 3×10^{9} light years aways, a similar scene could be discerned through a Wheeler worm-hole: Parvati was unpacking her transceiver, on travelator number two, while Shiva, wetting his hair at the Ganga fountain, watched his shakti rush past. At this moment, Shiva began to dance, causing a big bang, followed by the grand unification group $S U(3) \times S U(2)_{L} \times U(1) \rightarrow S U(2)_{L} \times U(1) \rightarrow U(1)$ Parvati, noticing this, sent a tachyonic message to Lakshmi : "Shiva has broken extended conformal supergravity again." After a few nanoseconds, Lakshmi received this portentous news and, since she was just whizzing past Vishnu, said : 'Lord Shiva is dancing," Vishnu had some trouble switching on his transmitter, but after three shakes of Garuda's tail, he sent the tachyonic message: "Shiva, it's time to dance." On receipt of this instruction, Shiva danced, dances or will dance.

What is the sequence of events that actually took place ?

※丸

Einstein's Theory of Special Relativity : Is it for ever?

C. S. Unnikrishnan
TIFR, Mumbai

Synopsis : Einstein's wide-ranging works published in 1905 are being celebrated this year as the jewels of physicists' creations, marking the world year of physics. Particularly important and striking among these works is the theory of special relativity that forms a foundation for physical theories of particles, interactions and dynamics. The gist of special relativity is that there are no privileged frames of observers and that all observers are equivalent. In particular every observer in uniform motion can claim a state of rest and there is no way to distinguish between a state of rest and state of uniform inertial motion. The theory abolished the concept of 'Ether'. The physical consequences include the well known time dilation, length contraction, equivalence of mass and energy etc. What is important in this theory is that all physical effects depend only on the relative velocity between observers and there is a theory that is strictly valid only in empty space.

The theory of special relativity was created when there was no observational or theoretical cosmology of the vast universe that came to be known only in the past 40 or 50 years. Now we know that there are vast amounts matter surrounding us, and that there are ways of precisely determining our motion relative to the uniform microwave background radiation in the universe. Does the new knowledge of cosmology that provides a notional preferred frame to define absolute velocity and absolute time make Einstein's most studied and celebrated creation - special relativity - invalid? If it did, that would be a shocking surprise with far reaching consequences to physics and natural philosophy.

In the talk, I will re-examine the theory of special relativity from a logically tight viewpoint, in the light of new cosmology. It turns out that the vast amounts of matter in galaxies and other forms affect time and space in a way that was not realized in 1905, or even later. It turns out that the physical effects observed in various experiments, and thought to be due to motion relative to each other are actually the gravitational effects of the matter in the universe. It is as if the matter filled universe has taken the role of the 'Ether'. Universe acts as a preferred frame, and physical effects actually depend on motion relative to the preferred frame of the universe (absolute motion) and not on just relative velocity between observers. In particular a transported clock can run faster than a stationary clock in some situations, contradicting the famous Einstein prediction of 1905 !

The totality of experimental evidence and logical consistency are thus against the fundamental theory of special relativity that we are celebrating today. Einstein's wonderful creation of 1905 had a good life of almost 100 years, but it has to be replaced by a new theory that acknowledges the gravity of the galaxies and other matter in the universe. The changes in time and space depend on absolute motion and are due to the gravitational influence of the entire universe. Mass is still equivalent to energy, but it is related to cosmology. Even the velocity of light is controlled by the gravity of the universe. Special relativity is not consistent with the fact that space is not empty. A theory of 'Cosmic Relativity' will replace 'Special Relativity', like the heliocentric theory replaced the earth-centric theory of the solar system. History teaches us that this paradigm change will be slow because of our tendency to adhere to old beliefs, but the change is inevitable with the realisation of the presence of the 'once given' matter filled universe.

- Atoms - Fluctuations and Brownian motion
- Light Quanta - photoelectric effect, spectrum, emission and absorption...
- Special Theory of Relativity
- Atoms and Light - 'Statistics', Bose-Einstein Condensation
- Equivalence Principle, Theory of Gravitation, General Theory of Relativity
- Foundational aspects of quantum theory - the E P R result and absence of action-at-a-distance (locality)

Physics Department Dacca University Dt. 4th June, 1924

Respected Master,

I have ventured to send you the accompanying article for your persual and opinion. I am anxious to know what you think of it. You will see that I have tried to deduct the co-efficient
$\frac{8 \pi v^{2}}{c^{3}}$. in Planck's law independent of the classical electrodynamics only assuming that the ultimate elementary regions in the Phase space has the content h^{3}. I do not know sufficient German to translate the paper. If you think the paper worth publication, I shall be grateful if you arrange for its publication in Zeitschrift fuer Physik. Though a complete stranger to you, I do not feel any hesitation in making such a request. Because we are all your pupils...

Yours faithfully,
S N Bose

Bose's derivation of the Planck law

1. Photons are indistinguishable particles with momentum hv/c (Quantum gas)
2. Any number of photons can be in the same state (identical properties like energy, momentum, polarization...)

a) Indistinguishable
b) Any number in same state

Probability of both particles in the same state $=2 / 3$

a) Distinguishable
b) Any number in same state

Classical statistics

Probability of both particles in the same state $=2 / 4=1 / 2$
This is far less than in the case for Bosons !
Thus bosons tend to occupy the lowest state much before reaching zero temperature

Bose condensation, Superfluid, Superconductor...
a) Indistinguishable
b) Only one in each state

Fermi-Dirac Statistics:

Only one particle in each state
Prob. of both particles in the same state $=0$
Many aspect of solid state physics, White dwarf, Neutron star...
Einstein to Ehrenfest:
'From a certain temperature onwards molecules
"condense" without attractive forces, that is, they accumulate at zero velocity. The theory is pretty, but is there also some truth to it?'

Bose-Einstein condensation of neutral atomic gas

Magneto-Optical Traps

Evaporative Cooling

The BEC Phase Transition 3D

Bose-Einstein Condensation

High Temperatures
classical particles

Low Temperatures wave packets

$\mathrm{T}=\mathrm{T}_{\mathrm{C}}$
 Bose-Einstein Condensation

$T=0$
pure Bose condensate

Bosons: Integer spin 'particles'

Fermions: Fractional spin 'particles'

Spin - Statistics Connection

"It appears to be one of the few places in physics where there is a rule that can be stated very simply, but for which no one has found a simple and easy explanation... This probably means that we do not have a complete understanding of the fundamental principle involved."
R. P. Feynman, FLP III

Perhaps we are forgetting something that is equally simple and obvious...

※ぬ

HAVE YOU THOUGHT ABOUT THE UNIVERSE TODAY?

An Overview of Cosmology

Before 1915 : No extra-galactic cosmology

> Largely milky-way + few novae + emptiness

1915-1925 : General Theory of Relativity, Large telescopes...
1925-1960 :Hubble law, Theoretical Universes, big- bang, expansion ...
1960 - 2004 : Microwave background, Hubble telescope, precision cosmology...

Cosmology:

The basis is General theory of Relativity and Einstein's equations
General features that are observationally supported:

- The Universe is expanding at the rate of $2 \times 10^{-18} \mathrm{~m} / \mathrm{s} / \mathrm{m}$
- The density of the Universe is about $2 \times 10^{-29} \mathrm{~g} / \mathrm{cm}^{3}$
- There is a background radiation with the black body spectrum at the temperature of 2.728 K
- The Universe is approximately isotropic and homogeneous at very large scales

The Cosmic Microwave Background Radiation

The Cosmic Microwave Background Radiation

Why is this a "problem"?
"The gist of the principle of relativity is the following. It is not possible to detect the motion of a body relative to empty space; in fact, there is absolutely no physical sense in speaking about such motion. If, therefore, two observers move with uniform but different velocities, then each of the two with the same right may assert that with respect to empty space he is at rest, and there are no physical methods of measurement enabling us to decide in favour of one or the other".
M. Planck, 1909

This situation is no longer true - space is never empty and there are markers for motion

Is it logically and physically consistent to work with a theory meant for empty space, in real universe filled with matter, energy and fields (discovered much later than 1905)?

Velocity of Light and Ether

- Michelson-Morley Experiment
- Fizeau Experiment
- Aberration

Ether + Real Lorentz contraction and Time dilation

All velocities are w.r.t Ether (absolute)

Empty Space + Lorentz transformations (relative)

All velocities are relative

- No preferred frame
- All observable physical effects depend only on relative velocities
- In particular, a transported clock will always run slower than a clock that remained stationary in the same frame (The 'velocity' of the frame is not important)
"If one of two synchronous clocks at A is moved in a closed curve with constant velocity until it returns to A, the journey lasting t seconds, then by the clock that has remained at rest the travelled clock on its arrival at A will be $1 / 2 \mathbf{t v}^{2} / \mathbf{c}^{2}$ second slow"
A. Einstein, 1905

WHY does one clock go slower?
Since each clock can be considered as at rest in its frame, which clock REALLY ages less?
(It is experimentally known that acceleration does not affect the rate of the (atomic) clocks - only velocities are important)

Usual statement :

A: B goes at velocity v for time T, very brief reversal, and then comes back at v for time T. Total time dilation is approximately $\quad-2 \mathrm{Tv}^{2} / 2 \mathrm{c}^{2}$. B ages less than me.

B:A goes at velocity v for time T', very brief reversal, and then comes back at v for time T^{\prime}. Total time dilation is approximately $-2 T^{\prime} v^{2} / 2 c^{2}$. A ages less than me.

I did feel some force, while at rest, for a brief period.
Important: A's estimate explicitly assumes that acceleration does nothing to either clock. So, if both A and B use the same physical laws, acceleration should be irrelevant (Einstein, 1911, 1914...)

Some comments at this points :

Acceleration by itself does not generate time dilation, and proper time is not affected by acceleration

Muons in storage ring at an acceleration of $10^{14} \mathrm{~cm} / \mathrm{s}^{2}$ have the same time dilation as muons traveling in straight line at the same velocity, for the same duration.

Note that there are SEVERAL "resolutions" of the twin clock problem in text books and physics literature, using different physical and logical reasoning:

A sure sign of confusion...
Einstein's resolution of the twin paradox in 1918

- Einstein, Naturewissenschaften 6, 697 (1918)
'Dialogue about objections to the Theory of Relativity'
Einstein was severely criticized in Germany for the clock paradox in special relativity...and finally he wrote a paper in 1918...

Einstein's resolution of the twin paradox in 1918
A. Einstein, Naturewissenschaften 6, 697 (1918)
'Dialogue about objections to the Theory of Relativity'

B

If two clocks are placed in DIFFERENT gravitational potentials, their rates and hence the accumulated time will be different.

Counter example :

Freeze the clock reading whenever there are accelerations (easy with real clocks)]

Hold here

No acceleration.
Remember that B's turning around cannot physically change A's rate!
So, we have to conclude that, with real clocks, B's turning around cannot change either B's rate or A's rate...and therefore, neither rate is affected due to turning around!

Einstein's 1918 resolution is incorrect - neither SR nor GR in empty space works here
Therefore, there is some other physical reason for experimentally observed time dilation...

Is Special Relativity Correct?

Can there be permanent physical changes like time dilation merely by moving relative to each other in empty space?

Some gravitational effects according to GR

Therefore, it will be inconsistent and indeed foolish to assume that moving within the massive Universe has no effect on local physics

Electromagnetism

At rest

○

$$
\phi\left(r-r^{\prime}\right)=-\frac{e}{\left|r-r^{\prime}\right|}
$$

In motion

$$
\begin{aligned}
& \phi\left(r-r^{\prime}\right)=-\frac{e}{\left|r-r^{\prime}\right|} \frac{1}{\sqrt{\left(1-v^{2} / c^{2}\right)}} \\
& \vec{A} \simeq \frac{\vec{v}}{c} \phi
\end{aligned}
$$

There is a four-vector potential
If there is a vector potential, then there are several new physical effects:
New forces:

- Time varying magnetic fields/ Vector potential

$$
\frac{\vec{E} \sim-\frac{\partial \vec{A}}{\partial t} \sim-\phi \frac{\partial \vec{v}}{\partial t}}{\vec{A} \sim \vec{v} \phi}
$$

If the velocity changes (either magnitude or direction), then there will be reactive electric forces that oppose the change

Also, if

$$
\nabla \times \vec{A} \sim \nabla \times \vec{v} \neq 0
$$

then there is a transverse force,

$$
\vec{v} \times \nabla \times \vec{A} \equiv \vec{v} \times \vec{B}
$$

Relativistic Gravity

$$
\phi\left(r-r^{\prime}\right)=-\frac{G m}{\left|r-r^{\prime}\right|}
$$

Expectation for particles in motion:

$$
\begin{aligned}
& \phi_{g}\left(r-r^{\prime}\right)=-\frac{G m}{r-r^{\prime}} \frac{1}{\sqrt{\left(1-v^{2} / c^{2}\right)}} \\
& \vec{A}_{g} \simeq \frac{\vec{v}}{c} \phi_{g}
\end{aligned}
$$

To second order in v/c, relativistic gravity is very similar to electromagnetism
"centrifugal forces are produced by rotation with respect to the mass of the earth and other celestial bodies, and not 'due to' motion relative to empty space".

What are the observable influences of the Universe?

Currents of mass generates a vector potential

And its 'curl' is a gravitational magnetic field

- Acceleration à Changing vector potential à Inertial force
- Angular acceleration \rightarrow Changing vector potential direction \rightarrow Centrifugal force
- Uniform motion when curl $\left(A_{g}\right)$ is not zero \rightarrow Gravitational Lorentz force $(v \times B) \rightarrow$ Coriolis force

Relativistic gravitational effects are very small near the earth and in the solar system.

Gravitational potential "here"

What is the gravitational potential in this room due to all the galaxies that can be seen through the Hubble telescope ?

Farthest seen galaxy is at 13 billion light years
Average matter density of galaxies is $10^{-30} \mathrm{~g} / \mathrm{cm}^{3}$

The inferred value of average density (including 'unseen matter') is 10 times larger than the average density of luminous matter. Therefore, the local gravitational potential is indeed equal to c^{2} !

An important fact in the matter filled universe:
When there is matter, motion generates anisotropy (a direction for the flow/current of matter). This means that the metric HAS to change. Therefore, Lorentz transformation is not legitimate in the presence of the matter-filled universe, even if the spatial geometry is flat.

And the universe is once-given, with its gravitational field.

What are the gravitational effects on clocks and scales?

$$
\Phi_{U}^{\prime}(V) / c^{2}=\frac{\Phi_{U} / c^{2}}{\sqrt{\left(1-V^{2} / c^{2}\right)}}
$$

So, a moving clock in the presence of the matter in the universe should slow down gravitationally, due to the different gravitational potential.

$$
\frac{\Delta T}{T}=\frac{\Delta \Phi}{c^{2}}=\frac{1}{c^{2}}\left[\Phi\left(1+\frac{V^{2}}{2 c^{2}}\right)-\Phi\right]=\frac{1}{c^{2}}\left[\frac{\Phi V^{2}}{2 c^{2}}\right] \simeq \frac{-V^{2}}{2 c^{2}}
$$

What are the gravitational effects on clocks and scales ?
At present we have two different reasons for the slowing down of a moving clock.

1) Special Relativity predicts

$$
\begin{aligned}
& T^{\prime}=T \sqrt{\left(1-v^{2} / c^{2}\right)} \approx T\left(1-v^{2} / 2 c^{2}\right) \\
& \Delta T \simeq-v^{2} / 2 c^{2}
\end{aligned}
$$

2) Gravitational effect of the masses in the Universe :

$$
\begin{aligned}
& \frac{\Phi_{U} / c^{2}}{\sqrt{\left(1-V^{2} / c^{2}\right)}} \simeq \frac{1}{\sqrt{\left(1-V^{2} / c^{2}\right)}} \\
& \rightarrow \Delta T \simeq-\left(V^{2} / 2 c^{2}\right)
\end{aligned}
$$

Muon rest lifetime $t_{0} \simeq 2.197 \mu \mathrm{~s}$
Storage ring (1978) v/c $\simeq 0.99942$
$t_{0} \sqrt{1-v^{2} / c^{2}} \simeq 29.36 \times 2.197=64.5 \mu \mathrm{~s}$
Measured $\simeq 64.4 \mu \mathrm{~s}$

Gravitational effect + Special relativity effect $=128.8$ micro-sec.

Measured $=64.4$ micro-s !
One of these is ruled out experimentally !
Since galaxies and other matter exists, and if GR is correct, then SR is experimentally invalidated!

A transported clock can run faster than a stationary clock !!

$$
\begin{aligned}
& \mathbf{A} \\
& \Delta T= \pm v u T / c^{2}= \pm v d / c^{2} \\
& = \pm \frac{1}{c_{\text {round trip }}} A_{g} \cdot d x
\end{aligned}
$$

"If one of two synchronous clocks at A is moved in a closed curve with constant velocity until it returns to A, the journey lasting t seconds, then by the clock that has remained at rest the travelled clock on its arrival at A will be $1 / 2 \mathbf{t v}^{2} / \mathbf{c}^{2}$ second slow"
A. Einstein, 1905

Is this prediction correct ?
Is a theory of relativity based on relative velocities (special relativity) in conflict with experiments?

The Hafele-Keating experiment

Measured values (relative to clock at rest):

$$
\delta t_{\text {Measured }} \quad-59 \pm 10 \quad 273 \pm 7
$$

After subtracting gravitational effect of earth,
$\delta t_{\text {Meassured }} \quad-204 \pm 20 \quad 94 \pm 20$

Westward clock DID run faster than the laboratory clock!

The correct resolution of the twin paradox :

The clock that moved more w.r.t the matter in the preferred frame of the universe runs slower. The effect is gravitational. There is no physical effect whatsoever due to 'moving relative to each other'

Generalization to quantum systems

The calculated quantized gravitational magnetic energy is half the magnetic fine structure splitting, with a negative sign!

Summary

- The massive Universe gravitationally affects classical and quantum dynamics in a significant way.
- Description of motion in terms of relative velocities is not consistent with presence of so much matter filling the universe - there is a preferred frame.
- Special relativity has to be replaced by Cosmic Relativity in the 'once given' Universe. After a good 100 years, it is definitely the end of special relativity.

Why was Einstein dissatisfied with Quantum Mechanics?

and ...

Where does that lead us?
Prof. T. P. Singh
TIFR, Mumbai
The World According to Newton (17 ${ }^{\text {th }}-19^{\text {th }}$ century)

- Material bodies live in space and time.
- Motion is relative. Speeds are relative.
- The motion of bodies is deterministic - given the position and velocity of an object, its motion is uniquely determined.

The Newtonian picture of the Universe lasted for some two hundred years
But it had to be then modified, because it could not explain newly discovered
o properties of LIGHT
o properties of ATOMS
NEWTONIAN WORLD

THE WORLD IS CAUSAL

- IF AN OBSERVER FINDS THAT EVENT 'A' HAPPENS BEFORE EVENT 'B’
- THEN ...
- ALL OTHER OBSERVERS ALSO AGREE THAT EVENT 'A' HAPPENS BEFORE EVENT 'B’

HOW ATOMS CHANGED OUR NEWTONIAN PICTUR OF THE WORLD

NEWTON CANNOT EXPLAIN ATOMS

- If Newton's mechanics is applied to the hydrogen atom, it predicts that the electron will fall into the nucleus! No spectrum.
- Enter Bohr (1913): Proposed that
(i) The electron has a state of lowest energy.
(ii) Its angular momentum is quantized in units of Planck's constant.

A NEW MECHANICS

- The work of Neils Bohr, followed by the ideas of de Broglie and Einstein on waveparticle duality ...
- LED TO THE BIRTH OF QUANTUM MECHANICS (1926).

THE QUANTUM LAWS OF MOTION

- The position and momentum of a particle cannot be simultaneously measured accurately. q p - p q = i h.•

THE END OF NEWTONIAN DETERMINISM

EINSTEIN WAS DISSATISFIED
 WITH
 QUANTUM MECHANICS !

- Correct and logically consistent, but incomplete.
- (Einstein nominated Heisenberg and Schrodinger for the Nobel Prize).

THE EPR ARGUMENT

- Suppose two particles with respective momentum $\left(q_{1}, p_{1}\right)$ and $\left(q_{2}, p_{2}\right)$ are in a state with definite momentum $P=p_{1}+p_{2}$ and definite position $q=q_{1}-q_{2}$.
- The two particles are allowed to interact and measurements are made on particle 1 long after the interaction, without disturbing particle 2.
- Measure p_{1} and one instantaneously knows p_{2}. Measure q_{1} and one instantaneously knows q_{2}.
- Since there can be no acausal influence, quantum mechanics is incomplete.

Einstein versus Quantum Mechanics

- Quantum Mechanics: There is indeterminism. There is also an acausal influence, which does not violate any experimental results.
- Einstein: There can be no acausal influence. Hence there can be no indeterminism. Quantum Mechanics is incomplete.

QUANTUM INDETERMINISM IS IN CONFLICT WITH CAUSALITY

Einstein's Vision

- To understand quantum phenomena as a consequence of an 'overdetermined' system of differential equations.
- Unfortunately, unrealized ...
and
Where does that lead us?

Quantum Mechanics without Classical Spacetime

- As we saw, the classical picture of spacetime and causality is in conflict with quantum mechanics.
- Classical spacetime is, however, produced by classical bodies, according to Einstein's general relativity, and hence has no place in quantum mechanics.
- It is this usage of classical spacetime which makes quantum mechanics incomplete.

How could one remove this incompleteness?

An idea ...

NONCOMMUTATIVE GEOMETRY

- Noncommutative geometry, developed by Alain Connes in the 1980s, is a natural generalization of the geometry of Riemann.
- In a noncommutative geometry, coordinates of spacetime do not commute with each other : x * y does not equal y * x

Proposal ...

- Quantum mechanics should first be described using noncommuting coordinate systems. There is an invariance under coordinate transformations.
- Such a description possibly allows for acausal influences.
- In the presence of classical bodies, classical spacetime becomes available, and the above description should reduce to standard quantum mechanics.

How could one test this idea? ...

Towards experiment ...

- In physics, there is a fundamental mass scale, called the Planck mass, and defined as:
$m_{\text {Planck }}=\sqrt{\bullet \text { c/G }} \approx 10^{-5}$ grams
- Quantum mechanics has been applied and experimentally tested only for particles with mass much smaller than Planck mass.

Towards experiment ...

- The description of quantum mechanics using noncommutative geometry predicts that just below the Planck mass scale, the theory actually becomes nonlinear.
- These non-linearities should be looked for, experimentally.
- Does the non-linearity open up a way for addressing indeterminism?

There is no doubt that quantum mechanics has seized hold of a beautiful element of truth and that it will be a touchstone for a future theoretical basis in that it must be deducible as a limiting case from that basis, just as electrostatics is deducible from the Maxwell equations of the electromagnetic field or as thermodynamics is deducible from statistical mechanics.

Einstein and Light Quanta

Prof. Arvind Kumar
Director, Homi Bhabha Science Education Centre

I Preludes to Einstein's Work
II Einstein's route to the light quantum hypothesis
III Photoelectric effect and Compton effect
IV Light quanta : Skepticism, struggles and triumphs
E Einstein's 1916 derivation of Planck's law
Bose's derivation of Planck's law : Photon statistics (1924)
Dirac's quantization of electromagnetic field (1927)
Wave-Particle duality

I. Preludes to Einstein's Work

1. 1859: Gustav Kirchhoff

Black body radiation or thermal radiation in a cavity with walls maintained at a certain temperature, in equilibrium :

Energy per unit volume per unit frequency interval is a universal function of frequency and temperature i.e. it is independent of the size, shape or material of the cavity/body.

Energy density between v to $v+\Delta v=\rho(v, T) v \nabla$

Challenge

To obtain the form of the universal function (Kirchhoff's function) $\rho(v, T)$ that was true for all v.

To derive a theoretical justification for the form of $\rho(v, T)$ so obtained.

2. Progress before Planck's law

Stefan - Boltzmann Law $(1883,84)$

Total energy density of thermal radiation (i.e. summed over all frequencies) is proportional to the fourth power of absolute temp.

$$
\mathrm{U}(\mathrm{~T})=\int_{0}^{\infty} \rho(v, \mathrm{~T}) \mathrm{d} v \alpha \mathrm{~T}^{4}
$$

Boltzmann gave a thermodynamic proof of this law in 1884.
Earlier (1883), Stefan arrived at this law experimentally.
Wien's Scalling law (1893)
Wien used thermodynamic reasoning to show that

$$
\rho(v, \mathrm{~T})=v^{3} \mathrm{f}\left(\frac{v}{\mathrm{~T}}\right)
$$

where f is a universal function of only one argument : v / T

Wien's law for black body radiation (1896)

$$
\rho(v / \mathrm{T})=\alpha v^{3} \overline{\mathrm{e}}^{\beta v / \mathrm{T}}
$$

Conjecture suggested by Maxwell's velocity distribution in a classical ideal gas.

Rayleigh - Jeans Law $(1900,1905)$

Equipartition theorem of classical statistical mechanics applied to thermal radiation as a system :

$$
\rho(v / \mathrm{T})=\frac{8 \pi^{2}}{c^{3}} \mathrm{kT}
$$

C: speed of light
K : Boltzmann constant

Experiments by Paschen (1897); Rubens and Kurlbaum (1900) showed that

Wien's law : Valid in high frequency limit
R-J law : Valid in low frequency limit

3. Enter Planck

Planck obtained an interpolation between the two limiting forms of black body radiation law : (October 19, 1900)

$$
\rho(v / \mathrm{T})=\frac{8 \pi v^{2}}{c^{3}} \frac{\mathrm{~h} v}{\mathrm{e}^{\mathrm{h} v / \mathrm{kT}}-1}
$$

h : a new fundamental constant of nature with the dimension of action now called Planck's constant.

$$
\begin{array}{ll}
\text { For } \frac{\mathrm{h} v}{\mathrm{kT}} \gg 1 & \rho(v, \mathrm{~T}) \rightarrow \frac{8 \pi \mathrm{~h}}{\mathrm{c}^{3}} v^{3} \mathrm{e}^{\mathrm{h} v / \mathrm{kT}} \\
\text { For } \frac{\mathrm{h} v}{\mathrm{kT}} \gg 1 & \rho(v, \mathrm{~T}) \rightarrow \frac{8 \pi \mathrm{kT}}{\mathrm{c}^{3}} v^{2}
\end{array}
$$

Planck's theoretical derivation of the blackbody radiation law : Birth of Quantum Theory (December 14, 1900)
i) Equation for joint equilibrium of matter and radiation
$\rho(v, \mathrm{~T}) \rightarrow \frac{8 \pi v^{2}}{\mathrm{c}^{3}} \mathrm{U}(v, \mathrm{~T}) \quad$ Plank's link
where $\mathrm{U}(v, \mathrm{~T})$ is the average energy of a charged material oscillator.
ii) Using Planck's law for $\rho(v, T)$, determine $U(v, T)$:

$$
U(v, \mathrm{~T})=\left(\mathrm{e}^{\mathrm{h} v / \mathrm{kT}}-1\right)
$$

Failure of classical equipartition theorem is evident at high frequency (For low frequency, $U(v, T)=k T)$
using

$$
T d S=d U
$$

(where T is a function of U for fixed v) and integrating

$$
\mathrm{S}=\mathrm{K}\left[\left(1+\frac{\mathrm{U}}{\mathrm{~h} v}\right) \ln \left(1+\frac{\mathrm{U}}{\mathrm{~h} v}\right)-\frac{\mathrm{U}}{\mathrm{~h} v} \ln \frac{\mathrm{U}}{\mathrm{~h} v}\right]
$$

iii Derivation of S :
N linear oscillators
$U_{N}=N U \quad S_{N}=N S$
$\mathrm{S}_{\mathrm{N}}=\mathrm{K} \ln \mathrm{W}_{\mathrm{N}}$
$\mathrm{U}_{\mathrm{N}}=\mathrm{P} \varepsilon$ (Quantum postulate: Total energy is made of finite energy elements ε)

$$
\frac{\mathrm{P}}{\mathrm{~N}}=\frac{\mathrm{U}}{\varepsilon}
$$

$\mathrm{W}_{\mathrm{N}}=$ Number of ways in which P indistinguishable energy elements can be distributed over N distinguishable oscillators.
$N=2$
$P=3$
$(3 \varepsilon, 0) ;(0,3 \varepsilon)$
$\mathrm{W}_{\mathrm{N}}=\frac{(\mathrm{N}-1+\mathrm{P})!}{\mathrm{P}!(\mathrm{N}-1)!}$
$(2 \varepsilon, \varepsilon) ;(\varepsilon, 2 \varepsilon)$
Using this in $S_{N}=k$ In W_{N} and applying stirling approximation;

$$
S=K\left[\left(1+\frac{U}{\varepsilon}\right) \ln \left(1+\frac{U}{\varepsilon}\right)-\frac{U}{\varepsilon} \ln \frac{U}{\varepsilon}\right]
$$

which is the earlier expression for S (step (ii))
With $\varepsilon=\mathrm{h} v$

II. Einstein's Route to the Light Quantum Hypothesis (March 1905)

Fine example of heuristic approach

- Planck's classical link for joint equilibrium of matter and radiation :

$$
\begin{equation*}
\rho(v, \mathrm{~T})=\frac{8 \pi v^{2}}{\mathrm{c}^{3}} \quad \mathrm{U}(v, \mathrm{~T}) \tag{A}
\end{equation*}
$$

By classical equipartition theorem for the material oscillator

$$
\begin{aligned}
& \mathrm{U}(v, T)=k \mathrm{~T} \\
& \rho(v, T)=\frac{8 \pi v^{2}}{\mathrm{c}^{3}} k \mathrm{~T} \quad \text { R }-\mathrm{J} \text { law }
\end{aligned}
$$

Disagrees with experiment (at high v) and also has the disastrous consequence that the integral over diverges i.e. Stefan - Boltzmann constant is infinite!

Einstein realised that R-J law is based on the solid foundations of classical mechanics and statistical mechanics and its failure signified there was something basically wrong with both.

- Planck's law is experimentally valid but has no proper theoretical basis.
- Wien's law is empirically valid at high \odot, where the classical R-J law fails. So Wien's law is likely to contain some non-classical features. Use Wien's law and examine the thermodynamics of radiation without using Planck's link (A). Do not use Planck's law for a start - this was Einstein's master stroke.
- Einstein arrived at the light quantum hypothesis by studying the volume dependence of entropy of Wien radiation. He found an analogy between this and the corresponding dependence of entropy of a classical ideal gas of material particles. The analogy led him to the

Light quantum hypothesis

"Monochromatic radiation of low density (i.e. within the domain of validity of the Wien radiation formula) behaves in thermodynamic aspect as if it consists of mutually independent energy quanta of magnitude $\mathrm{h} v$ "'.

Einstein's derivation
$\phi(v, \mathrm{~T})=$ entropy density per unit volume per unit frequency interval.
Use the Thermodynamic relation;

$$
\mathrm{T}^{-1}=\frac{\partial \phi}{\partial \rho}
$$

Use $\quad \rho=\alpha v^{3} \mathrm{e}-\beta v / \mathrm{T}$ Wien's law

$$
\phi=\frac{\rho}{\beta v}\left(\ln \frac{\rho}{\alpha v^{3}}-1\right)
$$

$$
\begin{array}{lr}
\mathrm{S}(v, \mathrm{~V}, \mathrm{~T})^{-}=\phi \mathrm{Vd} v & \text { entrophy between } v \text { to } v+\mathrm{d} v \\
\mathrm{E}(v, \mathrm{~V}, \mathrm{~T})=\rho \mathrm{Vd} v & \text { entrophy between } v \text { to } v+\mathrm{d} v \\
\mathrm{~S}(v, \mathrm{~V}, E)-\mathrm{S}(v, \mathrm{Vo}, \mathrm{E})=\frac{\mathrm{E}}{\beta v} \ln \left(\frac{\mathrm{~V}}{\mathrm{Vo}}\right)=\mathrm{k} \ln \left(\frac{\mathrm{~V}}{\mathrm{Vo}}\right)^{E / h v}
\end{array}
$$

Compare this with the standard formula for a classial ideal gas of n material particles:
$S(V, E)-S(V o, E)=k \ln \left(\frac{V}{V o}\right)^{n}$
\rightarrow Light quantum hypothesis
We now know that the derivation is not rigorous on several grounds :

- Boltzmann statistics not true for photon gas. Photons obey Bose statistics.
- Photon number is not conserved.

But luckily in the Wien regime
Boltzmann counting and Bose counting give the same answer.
Photon non-conservation does not play any effective role.
This is why Einstein got away with the non-rigorous derivation and made the great discovery.

So far a formal result - an analogy.
Next, the big jump :

The Heuristic Principle

"If, in regard to the volume dependence of the entropy, monochromatic radiation (of sufficiently low density) behaves as a discrete medium of energy quanta of magnitude hv, then this suggests an inquiry as to whether the laws of generation and conversion of light are also constituted as if light were to consist of energy quanta of this kind".

Heuristic Principle applied to three experimental observations :
Stokes' rule in photoluminscence
Photoelectric effect
Ionization of gases by ultraviolet light.
The highlight of the application was the photoelectric effect

- cited in Nobel Prize for him in 1922 :
"...... for his services to theoretical physics and in particular for his discovery of the law of the photoelectric effect".

III. Photoelectric and Compton effects

Photoelectric effect

1887 Discovered by Hertz

1902 Experiments by Lenard ejected electron's maximum energy independent of intensity; increasing with frequency. Threshold frequency

1905 photon of energy $\mathrm{h} v$ transfers all its energy to a single electron. (Einstein's picture)

$$
\mathrm{E}_{\max }=\mathrm{h} v-\mathrm{W}
$$

$\mathrm{W} \quad=\quad$ Workfunction of the metal
Verified by an extensive series of experiments by Milikan (up to 1915).
Completing the light quantum picture : directed momentum (photon)
Photon carries an energy parcel of $\mathrm{h} v$ and also has a directed momentum $h v / c$
1909 : momentum fluctuations of a mirror immersed in thermal radiation as a result of fluctuations in radiation pressure.

1916 : Energy and momentum balances in a molecular transition (emission and absorption) keeping Planck's distribution for radiation and Boltzmann's distribution for molecules stable.

Compton effect (Arthur Compton 1923)
Scattering of a photon by a (nearly) free electron.

Applying energy and momentum conservation to photon-electron collision.

$$
\Delta \lambda=\frac{\mathrm{h}}{\mathrm{mc}}(1-\cos \theta)
$$

Where $\Delta \lambda$ is the change in wave length of the photon and θ is the photon scattering angle.

Relation verified experimentally giving a strong support to the photon picture.

IV Light quanta : Skepticism, struggles and triumphs

> "I insist on the provisional character of the concept (light quanta) which does not seem reconcilable with the experimentally verified consequences of the wave theory" (Einstein, 1911)
> "Einstein's photoelectric equation \qquad appears in every case to predict exactly the observed results...... Yet the semi corpuscular theory by which Einstein arrived at this equation seems at present wholly untenable". (Millikan, 1915).
$>$ "I am not seeking the meaning of the quantum of action (light quanta) in the vacuum but rather in places where absorption and emission occur, and (I) assume that what happens in the vacuum is rigorously described by Maxwell's equations." (Planck, 1907)
$>$ "In sum, one can say that there is hardly one among the great problems in which modern physics is so rich to which Einstein has not made a remarkable contribution. That he may sometimes have missed the target in his speculations, as, for example, in his hypothesis of light quanta, cannot really be held too much against him, for it is not possible to introduce really new ideas even in the most exact sciences without sometimes taking a risk."
(Planck proposing Einstein for election to the Prussian Academy of Sciences).
$>$ "I do not doubt any more the reality of radiation quanta, although I still stand quite alone in this conviction". (Einstein, 1919)
> "The experimental support of the theory indicates very convincingly that a radiation quantum carries with it directed momentum as well as energy" (Compton 1923)"
Yet Bohr continued to remain a skeptic. He thought quantisation should refer to matter not radiation.

Bohr-Kramers-Slater (BKS) Proposal

Non - conservation of energy
Non - causality
Disproved experimentally
$>$ Einstein's Work on Specific Heats
Take Planck's link based on classical physics to be true in the quantum domain. Abandon equipartition theorem and use the link to get modified expression for energy of a material oscillator.

Einstein's alternative derivation of Planck's Law (1916)

System : a gas of molecules interacting with radiation in thermal equilibrium

$$
\begin{aligned}
& \mathrm{Nm}=\operatorname{Pm} \exp \left(-\frac{\mathrm{E}_{\mathrm{m}}}{\mathrm{kT}}\right) \\
& \mathrm{dW}_{\mathrm{mn}}=\mathrm{N}_{\mathrm{m}}\left(\rho \mathrm{~B}_{\mathrm{mn}}+\mathrm{A}_{\mathrm{mn}}\right) \mathrm{dt} \\
& \mathrm{dW}_{\mathrm{n} m}=\mathrm{N}_{\mathrm{n}} \rho \mathrm{~B}_{\mathrm{nm}} \mathrm{dt} \\
& -\mathrm{m} \\
&
\end{aligned}
$$

$$
\mathrm{B}_{\mathrm{nm}}=: \text { absorption } \mathrm{n} \rightarrow \mathrm{~m}
$$

A_{mn} : spontaneous emission $\mathrm{m} \rightarrow \mathrm{n}$
B_{mn} : induced emission $\quad \mathrm{m} \rightarrow \mathrm{n}$
In equilibrium,
$\mathrm{dW}_{\mathrm{mn}}=\mathrm{dW}_{\mathrm{nm}}$
Also
$B_{m n} P_{n}=B_{n m} P_{m}$

$$
\rho=\alpha_{\mathrm{mn}}\left\{\exp \left[\left(\mathrm{E}_{\mathrm{m}}-\mathrm{E}_{\mathrm{n}}\right) / \mathrm{kT}\right]-1\right\}^{-1}
$$

$$
\alpha_{\mathrm{mn}}=\frac{\mathrm{A}_{\mathrm{mn}}}{\mathrm{~B}_{\mathrm{mn}}}
$$

$\alpha_{\mathrm{mn}} \alpha v^{3} \quad \mathrm{E}_{\mathrm{m}}-\mathrm{E}_{\mathrm{n}}=\mathrm{h} v$
Planck's law emerges. Bridge between Planck's law and Bohr's theory.
Chance in spontaneous emission : breakdown of classical causality

Bose's derivation of Planck's law : Photon statistics

Integrate one particle phase space $d^{3} x d^{3} p$ over V and over all momentam between p^{s} and $p^{s}+d p^{s}$

$$
\mathrm{V} \times 4 \pi\left(\mathrm{p}^{\mathrm{s}}\right)^{2} \mathrm{dp}{ }^{\mathrm{s}}
$$

Multiply 2 to count two states of polarization.
$8 \pi \mathrm{~V}\left(\mathrm{p}^{\mathrm{s}}\right)^{2} \mathrm{dp}^{\mathrm{s}}$
use $\mathrm{p}^{\mathrm{s}}=\mathrm{h} v^{\mathrm{s}} / c$, to get

$$
h^{3} \quad Z^{s}
$$

Since each cell has volume h^{3}
no. of cells Z^{s} between v^{s} and $v^{\mathrm{s}}+\mathrm{d} v^{\mathrm{s}}$:
$\frac{8 \pi \mathrm{~V}}{\mathrm{c}^{3}}\left(v^{\mathrm{s}}\right)^{2} \mathrm{~d} v^{\mathrm{s}}$
which is the same as computed by counting the number of standing waves in a cavity with volume V .

Partition Z^{s} into number P_{r}^{s}, where P_{r}^{s} is the number of cells which contain r quanta with frequency v^{s}. Let there be N^{s} photons in all with this frequency and let E be the total energy.

Fig. : The failure of the classical Rayleigh-Jeans formula to fit the onserved spectrum of radiant intensity. At long wavelengths of the theory approaches the data, but at short wavelengths the classical formula fails miserably.

Fig. : Planck's function fits the observed data perfectly.

Then

$$
\begin{array}{ll}
\mathrm{Z}^{\mathrm{S}}=\sum_{\mathrm{r}} \mathrm{P}_{\mathrm{r}}^{\mathrm{S}} & \mathrm{~N}^{\mathrm{S}}=\sum_{r} \mathrm{r}_{\mathrm{r}}^{\mathrm{S}} \\
E=\sum_{\mathrm{S}} \mathrm{~N}_{\mathrm{h}}^{\mathrm{S}} v^{\mathrm{S}} & \mathrm{~N}=\sum_{\mathrm{S}} \mathrm{~N}^{\mathrm{S}}
\end{array}
$$

Bose's counting procedure:

$$
\mathrm{W}=\prod \frac{\mathrm{z}^{\mathrm{s}!}}{\mathrm{p}_{\mathrm{o}}^{\mathrm{s}}!\mathrm{p}_{1}^{\mathrm{s}}!\ldots \ldots}
$$

Maximum W as a function of p_{r}^{S}, holding Z^{s} and E fixed :

$$
\sum_{\mathrm{s}, \mathrm{r}} \delta \mathrm{P}_{\mathrm{r}}^{\mathrm{s}}\left(1+\ln \mathrm{P}_{\mathrm{r}}^{\mathrm{s}}+\lambda^{\mathrm{s}}+\frac{1}{\beta} \mathrm{rh} v^{\mathrm{s}}\right)=0
$$

which leads to Planck's law. Note $Z^{\text {s }}$ fixed means N is not fixed.
Actually, we now know
$Z^{\text {S }}$ fixed constraint not needed.
E fixed constraint alone leads to Planck's law.

Three new features implicit in Bose's derivation :

1. Photon number not conserved
2. $\mathrm{P}_{\mathrm{r}}^{\mathrm{S}}$ are defined by how many particles are in a cell. Boltzmann's axiom of distinguishability disappears. Statistics of indistinguishable particles.
3. Statistical independence of cells. No statistical independence of particles.

Four great papers before modern quantum mechanics were due to
Planck
Einstein
Bohr
Bose
Einstein applied Bose's counting formula, made appropriate modifications necessary for an ideal gas of molecules, and obtained quantum statistics of an ideal gas, with the important consequence of B-E condensation.

Dirac completed the understanding in 1926
Boltzmann's fine-grained counting formula

$$
\mathrm{N}=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \quad \mathrm{E}=\sum \varepsilon_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}
$$

Number of microstates W

$$
\begin{aligned}
\mathrm{W} & =\frac{\mathrm{N}_{\mathrm{i}}}{\prod_{n}!} & & \text { (Boltzmann st atistics) } \\
& =1 & & \text { (Bose }- \text { Einstein statistics) }
\end{aligned}
$$

Why did Einstein's 1905 derviation work ?
B-E statistics :

$$
\begin{aligned}
<\mathrm{n}_{\mathrm{i}}>= & {[\exp (\mathrm{h} v / \mathrm{kT})-1]^{-1} } \\
& \ll 1 \quad \text { for } \mathrm{h} v / \mathrm{kT} \gg 1
\end{aligned}
$$

Apart from an irrelevant factor N !,
Boltzmann = B-E for $\mathrm{h} v / \mathrm{kT} \gg 1$

Dirac's quantization of em field

- Field as a set of oscillators in memontum space.
- Quantisation of the oscillator as per canonical procedure of quantum theory
- Photon interpreted as a quantum of electromagnetic field.

Wave - Particle duality

1909 Einstein considered the full Planck's law - not just the Wien law - and used his energy fluctuation formula.

$$
\begin{aligned}
(\Delta \mathrm{E})^{2} & =\left\langle\mathrm{E}^{2}>-<\mathrm{E}\right\rangle^{2} \\
& \left.=\kappa \mathrm{T}^{2} \frac{\partial}{\partial \mathrm{~T}}<\mathrm{E}\right\rangle
\end{aligned}
$$

For unit volume and radiation between v and $v+\Delta v$
$<\mathrm{E}>=\frac{8 \pi v^{2}}{c^{3}} \Delta v \frac{h v}{\mathrm{e}^{\mathrm{h} v / \mathrm{kT}}-1}$
$(\Delta \mathrm{E})^{2}=\frac{c^{3}}{8 \pi v^{2} \Delta v}<\mathrm{E}>^{2}+\mathrm{h} v<\mathrm{E}>$
\downarrow
$(\mathrm{R}-\mathrm{J})$$\quad \begin{gathered}\downarrow \\ (\text { Wien })\end{gathered}$

Fusion of wave-particle aspects of photon
1923 Wave-particle duality for electrons (Louis de-Brogile)
Quantum theory incorporates wave-particle duality but its deep understanding is so far elusive.
"All the fifty years of conscious brooding have brought me no closer to the answer to the question, 'what are light quanta?'.

Of course today every rescal thinks he knows the answer, but he is deluding himself' (Einstein, a few years before his death)

References

1) Abraham Pais, Subtle is the Lord....... The Science and the Life of Albert Einstein", Oxford University Press, 1982.
2) John Stachel (editor), Einstein's Miraculous Year, Princeton University Press, 1998.
3) N. Mukunda 'The Story of the Photon’ Resonance $\underline{5}$ (3); 35 (2000).

Light as a particle. In this experiment a single photon falling on the half-silvered mirror goes to one detector or the other, never both.

Light as a wave. Interference requires that light travel both paths to the film.

Fig. : Schematic diagram of Compton scattering apparatus. The wavelength λ 'of the scattered X rays is measured by the detector, which can be moved to different positions θ. The wavelength difference $\lambda^{\prime}-\lambda$ varies with θ.

Fig. : Compton's original results for X-ray scattering.

A brief history of the Photoelectric Effect, 1905-2005

G. Ravindra Kumar
TIFR, Mumbai

The explanation of the photoelectric effect, for which Einstein won the Nobel Prize, forms the content of one of the papers that he published in 1905, revolutionizing physics in many ways. It may not have attracted compelling attention in the manner of its other, more "popular" companions like the theory of relativity, but as I attempt to show in this talk, it has had a remarkable effect in science and technology, improving our lives in so many ways. And the best part of it all is the fact that the photoelectric effect has acquired different meanings since 1905 and added new shades and dimensions. It may startle most people to realize that the two tenets that Einstein proposed in his interpretation are no more necessary or valid !

So what is the Photoelectric effect in 2005 ? Let us find out...........!

"Albert Einstein : some simple truths"

Ajit Kembhavi
IUCAA, Pune
Albert Einstein is known primarily for his theory of relativity, but he has made fundamental contributions to other areas of physics. Early in his career as a researcher, Einstein provided a very simple explanation of Brownian motion, which established experimentally the existence of atoms, he also provided a explanation of the photoelectric effect, assuming that light is made of particles. This led to the establishment of the quantum theory, a process that had been started by Max Planck. Einstein's work is very simple and yet it involved revolutionary concept. These two works were done along with the discovery of special relativity in the golden year of 1905.

"Role of Relativity
 in
 Astronomy and Astrophysics"

Dr. S. M. Chitre
Emeritus Professor, Dept. of Physics, University of Mumbai

Abstract

The structure and evolution of stars had dominated the field of Astrophysics in the first half of the 20th century. Despite the pre-eminent position of Relativity during this period, it hardly had any interaction with Astrophysics, except for the fruitful confluence of special relativity and quantum physics which culminated in the prediction of the limiting mass for white Dwarfs by Chandrasekhar. This was largely because the relativistic effects associated with the gravitational bending of light, gravitational shift of spectral lines and the precession of the perihelion of planet Mercury's orbit were regarded to be too small to be of any relevance in the wider contextof astrophysics.

In the realm of extragalactic astronomy, however, general relativity continued to direct the course of observational studies once the expansion of the Universe was established by Hubble and it also opened up the tantalizing possibility of manufacuring the light elements in the first few minutes of cosmic expansion following the Big Bang.

The increasing role of strong gravitational fields in controlling the energetic phenomena in astrophisics was recognized soon after a succession of discoveries were reported in the second half of the 20th century such as violent events in the nuclei of galaxies, quasars, pulasars, cosmic microwave background radiation, X-ray and Gamma ray sources. This renaissance ushering in the golden age of astronomy was made possible largely because of the technological advances that enabled the observers to survey the Universe simultaneously through most of the windows from radio to gamma rays. It will be amusing to speculate if the advances made during this period will be matched by even more exciting developments in this millennium !

- Despite its phenomenal impact in the first quarter of the $20^{\text {th }}$ century, Relativity had hardly any interaction with Astrophysics.
- Relativistic effects associated with gravitational bending of light, gravitational shift of spectral lines and precession of the perihelion of planet Mercury were considered too small to be relevant in broader context of Astrophysics.
- However, in the realm of extra-galactic astronomy General Relativity played a crucial role to account for the observed expansion of the Universe [Hubble \& Humason]
- Physics of stars and galaxies that are the main building blocks of the Universe provides the basic fibre for the cosmic tapestry.
- General relativity played a central role in directing course of observational and physical cosmology: Expansion of the universe and Big-Bang Nucleosynthesis (Thermodynamics and Cosmology)
- An important ingredient introduced in cosmology was thermodynamic history and the possibility of manufacturing the light elements ($\mathrm{H}, \mathrm{He}, \mathrm{D}, \mathrm{Li}$) in the very early hot, dense phase of expanding universe [Gamow].

Astronomy has over the ages been a testing ground for theories of gravity.

- Newton: Sizes and shapes of planetary orbits
- Einstein: Binary (double) Pulsars as powerful transmitters of gravitational waves.

Astronomy has always been driven by technological advancements.

- Some landmarks:
- 1610
- 1910-1930
- 1950-1960
- 1960 - 1970
- 1988 -

GOLDEN AGE OF ASTRONOMY
ACTIVE GALACTIC NUCLEI [QUASARS] (1963)
COSMIC MICROWAVE BACKGROUND RADIATION (1965)
SOLAR NEUTRINO EXPERIMENT (1966)
BINARY X-RAY SOURCES (1962)
PUSARS (1967)
GAMMA RAY BURSTS (1973)

QUASI - EQUILIBRIUM OF STARS

QUASI - EQUILIBRIUM OF STARS

- STARS ARE RESPONSIBLE FOR MANUFACTURING CHEMICAL ELEMENTS
- HISTORY OF A STAR IS CHARACTERIZED BY A CONTINUED CONTRACTION OF ITS CENTRAL REGIONS WITH HALTS CAUSE BY SUCCESSIVE NUCLEAR ENERGY GENERATION, PROGRESSIVELY THROUGH BURNING OF HYDROGEN, HELIUM, CARBON, OXYGEN, NEON, SILICON.. UNTIL NUCLEAR STELLER EQUILIBRIUM PEAK IS REACHED AROUND IRON
- EVOLUTION OF ATOMS IS CLOSELY LINKED WITH EVOLUTION OF STARS.

LIMITING MASS FOR WHITE DWARFS

(CHANDRASEKHAR LIMIT)
$\mathrm{M}_{\mathrm{Ch}} \simeq\left(\hbar \mathrm{c} / \mathrm{Gm}_{\mathrm{p}}\right)^{3 / 2} \mathrm{~m}_{\mathrm{p}} \simeq 1.4 \mathrm{M}_{\odot}$
$\hbar \quad=\quad$ Planck constant
$\mathrm{G}=$ Gravitational constant
c $=$ Speed of light
$\mathrm{m}_{\mathrm{p}} \quad=\quad$ Mass of proton
Chandrasekhar's limiting mass for white dwarfs elegantly combined Special Relativity with Quantum Physics.

FORMATION OF COMPACT OBJECTS

MASS RANGE	LIFETIME (years)	REMNANT
$\mathrm{M} / \mathrm{M}_{\odot} \# 0.7$	$\sim 10^{10}$	BROWN DWARFS
$0.7 \# \mathrm{M} / \mathrm{M}_{\odot} \# 8$	$\sim 10^{9}$	WHITE DWARFS
$8 \# \mathrm{M} / \mathrm{M}_{\odot} \# 20$	$\sim 10^{7.5}$	NEUTRON STARS
$20 \# \mathrm{M} / \mathrm{M}_{\odot}$	$\sim 10^{7}$	BLACK HOLES

ENERGY SOURCES FOR STARS

> GRAVITATIONAL

$$
\mathrm{E}_{\text {grav }}=-\mathrm{GM}^{2} / \mathrm{R} \sim-4 \times 10^{48} \mathrm{erg}
$$

$>$ THERMAL

$$
E_{\text {thm }}=\left(3 k T / 2 m_{H}\right) M \sim 2 \times 10^{48} \mathrm{erg}
$$

> NUCLEAR

$$
\mathrm{E}_{\mathrm{nuc}}=0.008 \mathrm{Mc}^{2} \sim 10^{52} \mathrm{erg}
$$

> CAPTURE OF MATTER (ACCRETION)

REBIRTH OF STARS

IF SUN-LIKE STARS WERE TO COLLAPSE TO FORM A NEUTRON STAR / BLACK HOLE, GRAVITATIONAL ENERGY RELEASED
$\sim-\mathrm{GM}^{2} / \mathrm{R}_{\mathrm{NS} / \mathrm{BH}} \sim-3 \times 10^{53} \mathrm{erg}$
IN THE COLLAPSED STATE COMPACT OBJECTS LIKE NEUTRON STARS, BLACK holes are endowed with more energy in their second life than before.

Gravitational Energy \quad Rotational + Magnetic Energy
RAPID ROTATION AND HIGH MAGNETIC FIELDS UNDERLIE MOST EXCITING PHENOMENA IN HIGH ENERGY ASTROPHYSICS

VITAL STATISTICS

	Sun	White Dwarf	Neutron Star	Black Hole
Radius (km)	700,000	7,000	10	3
Mean density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$	1	10^{7}	10^{14}	2×10^{16}
Rot. Speed (radians/sec)	3×10^{-6}	3×10^{-2}	$2 \times 10^{2-10^{4}}$	-
Magnetic field (Gauss)	1	10^{7}	$10^{12}-10^{16}$	-
Efficien. of Grav.	10^{-6}	10^{-4}	$10^{-2}-10^{-1}$	$6 \times 10^{-2}-4 \times 10^{-1}$
Energy Release $\left(\in=\right.$ GM $/$ Rc$\left.^{2}\right)$				

Increasing role of strong gravitational fields in controlling the energetic phenomena in astrophysics was recognised soon after a succession of discoveries such as violent events in the nuclei of galaxies (AGNs), QUASARS, Pulsars, CMBR, X-rays, g-rays and Cosmic rays.

Double PULSAR PSR J0737-3039

Period (P)	22.7 ms
Eccentricity e)	0.088
Orbital Period (T)	$\sim 2.4 \mathrm{hrs}$
Mass of Pulsar (Mp)	$1.34 \mathrm{M}_{\odot}$
Mass of companion (Mc)	$1.25 \mathrm{M}_{\odot}$

Rate of energy radiated in the form of gravitational waves

$$
\begin{aligned}
& L=\frac{32 G^{4} M_{p}{ }^{5}\left(M_{c} / M_{p}\right)^{7}}{5 c^{5} a^{5}\left(1+M_{c} / M_{p}\right)^{4}}\left(1+73 / 24 e^{2}+37 / 96 e^{4}\right)\left(1-e^{2}\right)^{-7 / 2} \\
& (a=\text { semi major axis, e eccentricity })
\end{aligned}
$$

SPECTRUM OF BLACK HOLE MASSES IN THE UNIVERSE

- PRIMORDIAL BLACK HOLES
- GALACTIC BLACK HOLES FORMED DURING CONDENSATION STAGES
- MASSIVE / SUPERMASSIVE BLACKHOLES FORMED AS A RESULT OF IMPLOSION OF (SUPER) MASSIVE STARS
- BLACK HOLES RESULTING FROM EVOLUTION OF DENSE STAR CLUSTERS
- ASTROPHYSICAL STELLAR MASS BLACKHOLES AS END-PRODUCT OF THERMONUCLEAR EVOLUTION OF MASSIVE (> $20 \mathrm{M}_{8}$) STARS

$$
\rho=\frac{3 \mathrm{c}^{6}}{32 \pi \mathrm{G}^{3} \mathrm{M}^{2}}=2.5 \times 10^{16}(\mathrm{M} \odot / \mathrm{M})^{2} \mathrm{gm} / \mathrm{cm}^{3}
$$

SIGNATURE OF BLACK HOLES

- HIGH EFFICIENCY OF GRAVITATIONAL ENERGY RELEASE THROUGH DISK ACCRETION ONTO MASSIVE BLACK HOLE.
- RAPID TIME VARIABILITY OF INTENSITY OF AGNs INDICATING A COMPACT ENGINE AS A SOURCE
- CHARACTERISED BY PRESENCE OF SUPERLUNINAL JETS.

ONCE A LARGE ENOUGH MASS HAS BECOME CONCENTRATED WITHIN SUFFICIENTLY SMALL VOLUME, A RUNAWAY PROCESS LEADING TO EVENTUAL FORMATION OF MASSIVE BLACK HOLE IS INEVITABLE

SUPERMASSIVE GAS CLOUD
$\left(\sim 10^{7}-10^{9} \mathrm{M}\right)$ ($\left.\sim 10^{7}-10^{9} \mathrm{M} \odot\right)$

CENTERS OF GALAXI ESHARBOURING SMBH

- MILKY WAY
$(2-3) \times 10^{6} \mathrm{M}$.
- M 87
$2.5 \times 10^{9} \mathrm{M}$ 。
- NGC 4258
$3.6 \times 10^{7} \mathrm{M}$ 。
- M 31
- M 32
- NGC 3377
- NGC 459
- NGC 3379

GAMMA RAY BURSTS (GRBs)

- GRBs accidentally discovered in late 1960s military VELA satellites monitoring atmospheric nuclear explosions.
(BATSE, COMPTON GRO, BeppoSAX)
Cosmological origin of GRBs with energy
$\sim 10^{52}-10^{53}$ erg.
For a few seconds GRBs are the most dazzling objects in the sky outshining rest of the universe with intense burst emission in $\mathrm{KeV}-\mathrm{MeV}$ range, lasting for ~ 30 microsec to hundreds of seconds and occurring at the rate of ~ 1000 per year.

Afterglow discovered in radio, optical, X-ray bands.
Steller mans compact objects are the central engines driving GRBs.
Merging neutron stars / black holes
Hypernovae resulting from collapsed massive stars.

COLLAPSED OBJECTS AND ASTROPHYSICAL PHENOMENA

- RADIO PULSARS
- BINARY / DOUBLE PULSARS :
- X-RAY BINARIES
- GAMMA RAY BURSTERS : MERGING NEUTRON STARS / BLACKHOLES
- AGNs / QUASARS

HYPERNOVAE
: ROTATI NG NEUTRON STAR PROVIDING THE STABLE CLOCK MECHANISM

PAIR OF NEUTRON STARS ACTING AS GARAVITATIONAL RADIATION TRANSMITTER
: NEUTRON STAR / BLACKHOLE WITH MASS LOSING COMPANION
: POWERED BY DISK ACCRETION OF GAS ONTO SUPERMASSIVE BLACKHOLES IN NUCLEI OF GALAXIES

- Observational astronomy went through a technological renaissance with the universe being simultaneously surveyed through a range of windows from radio to gamma rays.
- Will the advances made during this golden age of astronomy be matched by even more exciting discoveries in this millennium?
- Has astronomy any future now that the Universe has been glimpsed through most of these windows?

Outstanding problems in Astrophysics

- Solar neutrino puzzle, paradox, conundrum
- Seat and operation of solar dynamo
- Nature of central engines and underlying mechanisms driving energetic events such as supernovae, GRBs, AGNs (QUASAR), ultra-high energy cosmic rays
- Unambiguous signature of putative massive black holes lurking in centres of galaxies
- Coherence of well collimated jets associated with young proto-stars, X-ray binaries, AGNs over different length scales from pc to hundreds of Kpc.
- Original of angular momentum and magnetic field in the Universe
- Nature and distribution of dark matter and dark energy in the cosmos - structure formation in the Universe
- Ultimate fate of the Universe
- Are there parallel universes or is it all a cosmic illusion!

Einstein's Ideas in every Day Life

Mohan Apte
18 Roopali, Vartak Marga, Vile Parle (E), Mumbai 400057

Einstein's influence is far and wide, it is not limited to the theory of Relativity and its consequences. Einstein's ideas are playing an important role in our day to day life. Many modern technologies are based on some principles discovered by Einstein. His descriptions of how light acts as particles called photons, how atoms emit radiation and how velocity and gravity affects clocks are all important to make the common devices work. We shall have a glimpse of how Einstein's ideas are playing an important role in our day to day life.

PHOTOELECTRIC EFFECT

The photoelectric effect was observed as far back as 1839, in France. The current wave theory could not explain the phenomenon. Einstein correctly explained it, in one of his papers published in 1905. Einstein proposed that light consists of particles rather than waves. Afterwards these particles were named as photons. When light is allowed to incident on certain substances electrons are liberated. If intensity of incident light is increased, more number of electrons are emitted but their energy remains the same. Energy of liberated electrons increases with increase of the frequency of incident light. This is obvious because the energy of a photon is proportional to its frequency. Einstein was awarded Nobel Prize in 1921, for this very explanation of photoelectric effect. Modern technology is exploiting the properties of photoelectric effect. Following is list of some of the gadgets based on this effect.

- Photographic and video cameras
- Charged coupled devices (CCD)
- Image converters and inverters
- TV camera tubes
- Pointers and Sensors
- Light vision scopes
- Solar cells and solar panels
- Photometers

LASER

LASER is a short form of 'Light Amplification by Stimulated Emission of Radiation'. The laser owes its existence to a theoretical framework erected by Einstein in 1917. In that year he published a paper 'On the Quantum Theory of Radiation'. The seeds of modern lasers can be found in that paper. Atoms can be excited if they absorb light. They spontaneously emit light to return to a lower level. In addition to absorption and spontaneous emission, Einstein deduced that a third kind of interaction must exist, one in which a photon could induce an excited atom to emit another photon. These two photons in turn could stimulate two other atoms to emit photons, and so on.

Although Einstein's equations state that stimulated emission produces additional photons, they do not explicitly indicate that it produces exact copies, identical not just in frequency but also in phase. This means that all emitted photons are coherent. The trick of creating a coherent beam was to establish a ' population inversion' that is making more atoms excited than not excited. This was achieved in 1954 by Charles Townes. He devised the laser's
predecessor, the 'maser'. (Microwave amplification through stimulated emission of radiation) The laser was invented by Theodore Maiman in 1960. Since then Laser has captured many fields of modern technology. Following list will give some idea of how laser has spread its tentacles.

- Accurate measurement of Earth Moon distance
- Encode digital information on audio and video discs.
- Precision etching drilling and cutting metals.
- Eye surgery (Minimal invasive procedures in medicine)
- Welding cutting sealing ablating and coagulating tissues
- Unclogging obstructed arteries
- Breaking kidney stones
- Clearing cataracts
- Altering genetic materials
- Long distance transmission of signals for communication
- Accurate measurement of distances and time intervals
- Laser based weapons

BROWNIAN MOTION

The year 1905 is called miraculous year in the life of Einstein. In this year only Einstein published 5 scientific papers. All of them proved to be revolutionary. A paper on Brownian motion was one of them. Random motion of particles suspended in liquids is called Brownian motion. In those days molecules of liquids were not known. Einstein assumed their presence and suggested that the molecules of liquids collide with the suspended particles in all directions. The result is random motion of the particles. Einstein even tried to find out the dimensions of the molecules. Results of the Einstein's calculations are now applied in various fields listed below.

- Fractals (Random iteration algorithms)
- Medical imaging
- Robotics
- Estimation of extreme floods and draughts
- Market analysis
- Stock markets
- Manufacturing
- Decision making

Aerosol particles

GLOBAL POSITIONING SYSTEM (GPS)

Global positioning system consists of 24 satellites revolving around the Earth. With the help of GPS receiver anybody can find his accurate position on Earth. The receiver indicates latitude, longitude, height above ground and universal time. In order to get correct readings two relativistic corrections should be applied. First correction is due to very fast motion of the satellites. According to relativity time slows down due to speed.

This correction amounts to about 8 microseconds. Second correction is due to reduced gravity at the height of the satellites. According to relativity clocks run fast in low gravity. This correction amounts to 45 microseconds. Thus net relativistic correction is 45-8 = 37 microseconds. Without these corrections the readings would have gone wrong by several kilometers. GPS satellites have found their application in numerous fields.

- Search and rescue operations
- Ships monitoring system
- Hydrographic survey
- Spacecraft launch and landing
- Navigation
- Weapons guidance and control
- Photoreconnaissance and intelligence gathering
- Surveying and mapping
- Transportation and communication
- Airport approach and landing
- Aerial photography
- Open ocean and costal navigation
- Map updating
- Seismology
- Meteorology

EINSTEIN'S MASS ENERGY EQIVALENCE (E = m c square)

' $E=m c^{\wedge} 2^{\prime}$ ' is Einstein's most famous equation. He proved this mass energy equivalence in his miraculous year i.e. in 1905. Since the multiple of the mass is square of velocity of light, which is ' $9 \times 10^{\wedge} 16^{\prime}$ ', it is obvious that a very small mass will yield tremendous amount of energy if it is completely converted in to energy. This is the principle of atomic bombs and nuclear power generation. Besides that the phenomenon has several other applications, such as,

Powers the Sun therefore life on Earth

- Keeps Earth's crust warm
- Provides study of matter and antimatter annihilation
- Powers the satellites from Plutonium
- Proposed radiation pressure driven spaceships
- Proposed fusion reactors
- Study of high energy particle physics
- Radio isotopes used in medical imaging and radio therapy
- Power from fission reactors: Nuclear power plants
- Nuclear weapons: Atom and hydrogen bombs

SPINTRONICS

For stability of atom relativity demands that the electrons moving round the nucleus
should also spin. This fact can be exploited to create new version of electronic circuits. Already silicon chips are reaching their limits. Connections are coming so close that the quantum effects will not allow the circuits to function properly. The electrons will start jumping across the connections. New technologies are now searched. That can replace silicon chips. One such alternative is Spintronics. An electron can spin 'up' or 'down'. One of its positions can be assumed to be ' 1 ' and another ' 0 '. Thus logical circuits can be built using this property of an electron. Efforts are being made in this direction. Already some applications are visualized as follows

- Semiconductor devices: Transistors, IC, LED, Lasers, CPU, Processors
- Magnetic devices
- Non volatile memory
- Storage
- Magneto optical devices
- Optical isolators

BOSE EINSTEIN CONDENSATION

When atoms are cooled very close to Absolute zero, the waves associated with the atoms overlap each other. In that case all atoms together behave as a single atom. A so called 'super atom 'is formed. This is called 'Bose Einstein Condensation'. Now Bose Einstein Condensation is treated as the $5^{\text {th }}$ state of matter. It offers a clearer window than we have ever had before onto the weird world of Quantum Statistical Mechanics.

We know that speed of light reduces when it passes through a transparent medium. For example speed of light in glass is about $200,000 \mathrm{~km} / \mathrm{sec}$. If a beam of light is allowed to pass through Bose Einstein condensate, it is completely stopped within the super atom. In fact if the beam carries information, it can be completely recovered, when the same is allowed to emerge out of the condensate. This property can be utilized in future. Following are some of the proposed applications of BEC.

- Creation of Atom Laser, that can be used in;

1. Atom optics
2. Atom lithography
3. Precision atomic clocks
4. Holograms
5. Communication and Computation

- Storage devices
- Fundamental understanding of Quantum Mechanics
- Model of Supernova explosion
- Model of Black hole

Albert Einstein : Man and Scientist

Prof. Ajay Palekar
Physics Department
R.D. National College

That very name Einstein, evokes wonder and awe; wonder for the astonishing miracles of his science, his Relativity theory, the energy and mass formula, $\mathrm{E}=\mathrm{mc}^{2}$, which allowed man to touch the throbbing heartbeat of the sun, the notion of photons and photo electricity, which led others to discover the solar power cell and the laser. Almost any one of his discoveries would have earned him universal admiration and respect. But for one lone man, using the limitless creativity of mind to envisage the twisting eddies and warps of time, space and gravity, Einstein's achievements become truly awesome.

Who was this man who was perhaps called the greatest scientist of all times and why was he so respected, admired and even loved, by almost the entire world ?

Einstein was fond of telling the story about his childhood, when four or five years old. The family - his father Hermann, Mother Pauline and sister Maja, two years younger than he, were living in Munich at that time. As the story goes, young Albert had been ill and in bed and his father brought him a small compass to play with. Many children have palyed with such a toy compass but for young Albert the effect was extraordinary. For, as Einstein recalled later, here was a tiny needle isolated and unreachable behind its glass cover, a needle that was mysteriously caught by an invisible force that made it point towards the North Pole. To Albert Einstein that simple toy compass was a revelation and he wrote in a letter : "Outside events capable of determining a person's thoughts and actions probably occur in everyone's life. But with most people such events have no effect. As for me, when I was a little boy, my father showed me a small compass and the enormous impression it made on me certainly played a role in my life."

Einstein was born in Ulm, Germany on March 14, 1879. A year later his father moved his family and his electrochemical business to Munich and it was there that young Einstein grew up. By instinct young Albert was a loner. His sister Maja recalled later that he preferred to play by himself and he enjoyed games that required patience and perseverance. He did not learn to speak until he was three years old. Einstein grew to be good in the subjects he was interested in, but hated things that required a lot of memorization like languages, Botany and so on. On teacher harshly concluded about Albert Einstein, "you will never amount to anything." But in mathematics and physics, Einstein was far beyond the school curriculum, and that was as much due to his sense of wonder and curiosity as to his independent study of the subject.

His love for music, mathematics and physics was joined by another love, something he called holy geometry. When he was merely twelve, he came upon a geometry text book and read it avidly. He was amazed at the fact that one started with axioms that couldn't be doubted and through simple arguments emerged amazing theorems. He realized that in order to make a transition to physics, one has to begin by grasping some universal truths and then proceed from there; and not by merely collecting facts for it may not be possible to piece them together.

At the age of fifteen, his father's business began to fail and Hermann Einstein moved his family to Italy. They left Albert behind so that he could get his high school diploma but Albert
found himself unhappy and lonely. The teachers did not like him and one of them asked him to leave the school. Einstein was happy to leave and went to visit his family in Italy. He roamed the country with a friend and wallowed in the warm temperaments of the Italians, so different from the Germans.

In the year 1900, he graduated from the Zurich Polytechnic and became a Swiss citizen, in 1903, he married his old classmate Mileva Maric. Because of his forthrightness and distrust of authority he had alienated his professors, who might have otherwise helped him to get a job. He was reduced to taking odd jobs such as as that of a part - time teacher. It was his old friend Marcel Grossman, who saved the situation. He pulled strings with the head of the patent office at Zurich, to get him a job there. Einstein worked at this office for seven years

The year 1905 was a year of incredible achievements for the twenty six year old patent examiner. He published a paper entitled: "On the electrodynamics of moving bodies "which became known as Einstein's Special theory of Relativity.

Also in 1905, Einstein introduced an idea, quite revolutionary at that time, that light can sometimes have characteristics of particles. And it was these particles, or photons as they are called, which knocked out electrons of metals (Photoelectric effect.)

Einstein wrote in a letter that the motivation of his scientific work was an irresistible longing to understand the secrets of nature. In all his work, he was striving to find the least complicated way to explain the universe.

When the first World War broke out in August 1914, Einstein was at work on his General theory of Relativity, and in 1915 he published his thesis. General Relativity predicted that when light from a distant star passes close to the Sun, on its way to the Earth, the intense gravity of the solar disc would bend the light.

The news was electrifying to a world weary with death and destruction. Overnight Einstein became famous. Reporters from newspapers beseeched him for interviews. The popular acclaim was as puzzling to Einstein as his theory was to the public! He wrote to a friend : "With fame I became more and more stupid, which is a very common phenomenon. There is far too great a disproportion between what one is and what others think one is, or at least what they say they think one is. But, one has to take it with a good sense of humour."

With his shaggy hair and rumpled clothes, Einstein did not fit the stereotyped image of the world's greatest scientist. But most of all there was a sense of humour especially when describing himself. Consider the letter he wrote to a young relative, upset because he had not visited her house. Einstein wrote :"Dear Miss Ley, I hear that you are dissatisfied because you did not see me. Let me therefore tell you what I look like : pale face, long hair, and a tiny beginning of a paunch. In addition an awkward gait, a cigar in the mouth - if I happen to have one, a pen in pocket or hand. But crooked legs and warts I do not have, and I am quite handsome. Also, no hair on my hands such as is often found in ugly men. So it is indeed a pity that you did not see me. With warm greetings, Yours uncle Einstein."

In 1921, Einstein won the Nobel Prize - his only Nobel award for his work on the photoelectric effect. There was no mention in the official citation of the Relativity theory that was regarded as too controversial, both scientifically and culturally.

In Germany, meanwhile, there were the first stirrings of fascism and anti-Semitism. Jews were being blamed for Germany's loss of the first World war, and Einstein himself was under attack. He was always outspoken in his opposition to German militarism, and neither his
pacifism nor his world wide fame could stop the harassment he was subject to. Einstein spent much of his time abroad teaching, and when Hitler came to power in Germany in 1933, he made his final break with his homeland.

As the threat of war in Europe approached, there were growing worries that the Nazis might be trying to develop an atomic bomb. Einstein had no role in the actual development of the bomb but was forced to lend the prestige of his name to it in 1939. The rest is history. The bomb was developed and was used. When it was dropped on the Japanese, Einstein was horrified and said that had he known before, as was discovered later, that the Nazis had given up the attempt to develop the bomb, he would not have had anything to do with it.

Life slowed down for Einstein after 1950. He worked for nuclear disarmament and continued to speak out strongly against attempts to curb freedom. In the last years, Einstein worked steadily at the Institute for Advanced Studies, Princeton, New Jersey. He was searching for the elusive. 'Unified Field Theory', to explain and unite the forces of gravitation and electromagnetism. He was not successful. But as wrote to a friend," I still struggle with the same problem as ten years ago. I succeed in small matters, but the real goal remains unattainable even thought it seems probably close. It is hard, and yet rewarding. Hard because the goal is beyond my powers, but rewarding because it makes one immune to the distractions of everyday life."

Einstein died on April 18, 1955. The entire world mourned his passing. Shortly after his death, newspapers carried a small drawing by a political catoonist Herblock. It showed a tiny planet Earth lost amidst the stars. Attached to the side was that said simply," Albert Einstein lived here."

Science Fiction based on Einstein Theories

"There is no perfect theory but there can be a successful theory because no matter how many experiments agree with it, if one proves it wrong than the theory is wrong. The only way a science can progress is by proving a theory wrong. When a fact doesn't fit a theory there is a urgent need to either patch it or discard it. For wrong theory a scientific theorist is not be envied. For nature ** is an inexorable and not very friendly judge of his work. It never says a "yes" to a theory. In very best case, it says 'May be' and in great majority of cases simply 'No'.

The world we live is stranger than fiction. It seems strange that living creatures who believe themselves is the most intelligent are unable to know even their own origin in time span of more than 2000 years. The science, humans have developed is inconsistent. There is one theory that explains one phenomenon precisely but fails completely at the either. The science of today is successful in making things more complicated than rather making it simpler.

Albert Einstein, the science icon of the century revolutionized the entire physics. He changed the way we think about space and time. His two theories published in 1905 A. D. called special relativity (S. R) and general relativity (G. R) seemed fiction to the world initially and very few physicist accepted it. These theories were way apart from our thinking. But now this is the theory that has formed the base to what we call as modern physics or quantum physics. It solved the biggest challenges of physics such as answer to Michelson-Morley experiment and getting rid of other, explaining that even time is relative and that time travel is possible through time dilation phenomenon. Showing that gravitational leansing could allow us to see magnified image of most distant galaxies and much more.

Science fiction means assumption without proofs. The S.R. and G.R. can be rightly said as completion of Newtonian classical physics. Einstein, the most celebrated scientist of twentieth century, remain an icon of power, of human reason to penetrate mysterious nature for billions of people who have been taught the essence of his relativity theories, he changed (or muddled) their very conuption of time and space. He destroyed the common sense concept of universal now-the absolute simultaneity of events in different relatively moving reference it could be said that theory was almost next to perfection. The scientist even today are trying to find Grand Unified Theory (G.U.T) on basis of relativity.

Even though the theory had roaring success the theory left behind a very few doubts that are yet not verified. This unexplained staff unless successfully found agreeing with relativity would eventually tend to declare relativity as an incomplete theory rather than proving it wrong. Einstein himself at various times had expressed doubts about the edifice of modern physics that he had helped to create - witness the remarks that fovour perhaps his most serious expression of doubt come in 1954 letter, the year before he died, to his friend Michel Besso : I consider it quite possible that physics cannot be based on the field concept i.e. on continuous structures.

Here I am going to suggest the discrepancy in relativity and alternative theories which could resolve them. These are purely my own views and the outcome of my thinking, you could tell it as research work on S.R. and G.R. They are none less than fiction because eventhough some aspects have mathematical proofs but they are not verified experimentally.

PROBLEMS WITH RELATIVITY : (Conclusion)

1) Relativity suggest that nothing that can transmit information could crose speed of light. But speed of gravity can't be less than that of light in vacuum. The best example to explain this is that in black hole the escape speed from event horizon is greater than ' C ', hece black hole must not exert any gravitational field. This is contrary to observation suggesting speed of gravity must be greater that ' C '.
2) A movement or change can only be defined when we mention an observer. Hence there is no absolute motion. So concept of absolute motion is to be discarded as that of absolute space and absolute time.
3) There is no change in universe in absolute terms. Universe is as it as it was. Even its expansion is not spared. It's expansion can't be in nothing. Thus the expansion is only illusion in absolute terms.
4) Only matter and energy in Universe is moving apart with respect to other matter and energy. It's boundaries aren't expanding.
5) Relativity suggest the relativisic effects are proportional to its relative speed or velocity but not with respect to its acceleration.
6) Light early speed may be less as compared to ' C '. Moreover light suffers bending in intense Gravitational field Resulting sometimes in gravitational lensing. So light alone can't be used to predict the age of universe.
7) As energy causes subatomic particles to raise to higher energy level the force tends to increase the masses of the body as they approach the speed of light.
8) According to relativity we can't predict which length is larger unless the we know it's relative speed w.r.t. to us.
9) Relativity suggest that light speed can't be exceeded hence the warp drives, warm hole and super luminance theory are not supported by it.

Written by
Bhavin D. Udani
(Student)

